
 

 

Making Games with 

Python & Pygame 
 

 

 

 

 

 

 

 

 

 

 

 

 

By Al Sweigart 

 



 

 

Email questions to the author: al@inventwithpython.com 

 

Copyright © 2012 by Albert Sweigart 

Some Rights Reserved. ―Making Games with Python & Pygame‖) is licensed under a Creative 

Commons Attribution-Noncommercial-Share Alike 3.0 United States License. 

You are free: 

 To Share — to copy, distribute, display, and perform the work 

 To Remix — to make derivative works 

Under the following conditions: 

 Attribution — You must attribute the work in the manner specified by the author or 

licensor (but not in any way that suggests that they endorse you or your use of the work). 

(Visibly include the title and author's name in any excerpts of this work.) 

 Noncommercial — You may not use this work for commercial purposes. 

 Share Alike — If you alter, transform, or build upon this work, you may distribute 

the resulting work only under the same or similar license to this one. 

 

This summary is located here: http://creativecommons.org/licenses/by-nc-sa/3.0/us/ 

 

Your fair use and other rights are in no way affected by the above. There is a human-readable 

summary of the Legal Code (the full license), located here: 

http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode 

 

Book Version 2 

If you've downloaded this book from a torrent, it’s probably out of date. Go 

to http://inventwithpython.com/pygame to download the latest version.  
 

ISBN (978-1469901732) 

1st Edition 

 



 

 

 

 

 

 

For Calvin Chaos  



 

 

Email questions to the author: al@inventwithpython.com 

 

 



Who is this book for?    i 

 

 

WHO IS THIS BOOK FOR?  
When you get down to it, programming video games is just about lighting up pixels to make 

pretty pictures appear on the screen in response to keyboard and mouse input. 

And there are very few things that are as fun. 

This book will teach you how to make graphical computer games in the Python programming 

language using the Pygame library. This book assumes you know a little bit about Python or 

programming in general. If you don’t know how to program, you can learn by downloading the 

free book ―Invent Your Own Computer Games with Python‖ from http://inventwithpython.com. 

Or you can jump right into this book and mostly pick it up along the way. 

This book is for the intermediate programmer who has learned what variables and loops are, but 

now wants to know, ―What do actual game programs look like?‖ There was a long gap after I first 





About This Book    iii 

 

TABLE OF CONTENTS 
Who is this book for? ........................................................................................................................ i 

About This Book .............................................................................................................................. ii 

Chapter 1 – Installing Python and Pygame ...................................................................................... 1 

What You Should Know Before You Begin ................................................................................ 1 

Downloading and Installing Python ............................................................................................. 1 

Windows Instructions .................................................................................................................. 1 

Mac OS X Instructions ................................................................................................................. 2 

Ubuntu and Linux Instructions .................................................................................................... 2 

Starting Python............................................................................................................................. 2 

Installing Pygame......................................................................................................................... 3 

How to Use This Book ................................................................................................................. 4 

The Featured Programs ................................................................................................................ 4 

Downloading Graphics and Sound Files ...................................................................................... 4 

Line Numbers and Spaces ............................................................................................................ 4 

Text Wrapping in This Book ....................................................................................................... 5 

Checking Your Code Online ........................................................................................................ 6 

More Info Links on http://invpy.com ........................................................................................... 6 

Chapter 2 – Pygame Basics .............................................................................................................. 7 

GUI vs. CLI ................................................................................................................................. 7 

Source Code for Hello World with Pygame ................................................................................ 7 

Setting Up a Pygame Program ..................................................................................................... 8 

Game Loops and Game States ................................................................................................... 10 

pygame.event.Event Objects ........................................................................................... 11 

The QUIT Event and pygame.quit() Function .................................................................. 12 

Pixel Coordinates ....................................................................................................................... 13 



iv    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

A Reminder About Functions, Methods, Constructor Functions, and Functions in Modules (and 

the Difference Between Them) .................................................................................................. 14 

Surface Objects and The Window ............................................................................................. 15 

Colors ......................................................................................................................................... 16 

Transparent Colors ..................................................................................................................... 17 

pygame.Color Objects .......................................................................................................... 18 

Rect Objects ............................................................................................................................... 18 

Primitive Drawing Functions ..................................................................................................... 20 

pygame.PixelArray Objects .............................................................................................. 23 

The pygame.display.update() Function ...................................................................... 24 

Animation .................................................................................................................................. 24 

Frames Per Second and pygame.time.Clock Objects ....................................................... 27 

Drawing Images with pygame.image.load() and blit() ............................................ 28 

Fonts ........................................................................................................................................... 28 

Anti-Aliasing.............................................................................................................................. 30 

Playing Sounds........................................................................................................................... 31 

Summary .................................................................................................................................... 32 

Chapter 3 – Memory Puzzle .......................................................................................................... 33 

How to Play Memory Puzzle ..................................................................................................... 33 

Nested for Loops ..................................................................................................................... 33 

Source Code of Memory Puzzle ................................................................................................ 34 

Credits and Imports .................................................................................................................... 42 

Magic Numbers are Bad ............................................................................................................ 42 

Sanity Checks with assert Statements ................................................................................... 43 

Telling If a Number is Even or Odd .......................................................................................... 44 

Crash Early and Crash Often! .................................................................................................... 44 

Making the Source Code Look Pretty ........................................................................................ 45 

Using Constant Variables Instead of Strings ............................................................................. 46 

Making Sure We Have Enough Icons ........................................................................................ 47 

Tuples vs. Lists, Immutable vs. Mutable ................................................................................... 47 



About This Book    v 

 

One Item Tuples Need a Trailing Comma ................................................................................. 48 

Converting Between Lists and Tuples ....................................................................................... 49 

The global statement, and Why Global Variables are Evil.................................................... 49 

Data Structures and 2D Lists ..................................................................................................... 51 

The ―Start Game‖ Animation ..................................................................................................... 52 

The Game Loop ......................................................................................................................... 52 

The Event Handling Loop .......................................................................................................... 53 

Checking Which Box The Mouse Cursor is Over ..................................................................... 54 

Handling the First Clicked Box ................................................................................................. 55 

Handling a Mismatched Pair of Icons ........................................................................................ 56 

Handling If the Player Won ....................................................................................................... 56 

Drawing the Game State to the Screen ...................................................................................... 57 

Creating the ―Revealed Boxes‖ Data Structure ......................................................................... 58 

Creating the Board Data Structure: Step 1 – Get All Possible Icons ......................................... 58 

Step 2 – Shuffling and Truncating the List of All Icons ............................................................ 59 

Step 3 – Placing the Icons on the Board .................................................................................... 59 

Splitting a List into a List of Lists.............................................................................................. 60 

Different Coordinate Systems .................................................................................................... 61 

Converting from Pixel Coordinates to Box Coordinates ........................................................... 62 

Drawing the Icon, and Syntactic Sugar ...................................................................................... 63 

Syntactic Sugar with Getting a Board Space’s Icon’s Shape and Color .................................... 64 

Drawing the Box Cover ............................................................................................................. 64 

Handling the Revealing and Covering Animation ..................................................................... 65 

Drawing the Entire Board .......................................................................................................... 66 

Drawing the Highlight ............................................................................................................... 67 

The ―Start Game‖ Animation ..................................................................................................... 67 

Revealing and Covering the Groups of Boxes ........................................................................... 68 

The ―Game Won‖ Animation .................................................................................................... 68 

Telling if the Player Has Won ................................................................................................... 69 



vi    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

Why Bother Having a main() Function? ................................................................................ 69 

Why Bother With Readability?



About This Book    vii 

 

Drawing the Buttons ................................................................................................................ 100 

Animating the Tile Slides ........................................................................................................ 100 

The copy() Surface Method ................................................................................................. 101 

Creating a New Puzzle ............................................................................................................. 103 

Animating the Board Reset ...................................................................................................... 104 

Time vs. Memory Tradeoffs .................................................................................................... 105 

Nobody Cares About a Few Bytes ........................................................................................... 106 

Nobody Cares About a Few Million Nanoseconds .................................................................. 107 

Summary .................................................................................................................................. 107 

Chapter 5 – Simulate .................................................................................................................... 108 

How to Play Simulate .............................................................................................................. 108 

Source Code to Simulate .......................................................................................................... 108 

The Usual Starting Stuff .......................................................................................................... 114 

Setting Up the Buttons ............................................................................................................. 115 

The main() Function ............................................................................................................. 115 

Some Local Variables Used in This Program .......................................................................... 116 

Drawing the Board and Handling Input ................................................................................... 117 



viii    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

Converting from Pixel Coordinates to Buttons ........................................................................ 129 

Explicit is Better Than Implicit ................................................................................................







About This Book    xi 

 

The Game Over Screen ............................................................................................................ 231 

Winning ................................................................................................................................... 232 

Drawing a Graphical Health Meter .......................................................................................... 232 

The Same Old terminate() Function ................................................................................ 232 

The Mathematics of the Sine Function .................................................................................... 233 

Backwards Compatibility with Python Version 2

 ....
....

....
....

....
....

....
....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

 231 Te Old  Function .............................................................................. 231  231 

 

................................................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.......... 232  ................................................................................................

 232 





About This Book    xiii 

 

 

 

 

This page intentionally left blank. 

 

 

 

 

 

 

 

…except for the above text. 

And the above text. 

And the above text. 

And the above text. 

And the above text. 

And the above text. 

And the above text. 

And the above text. 

And the above text. 

Traceback (most recent call last): 

  File "<pyshell#1>", line 1, in blankpage 

    def blankpage(): blankpage() 

RuntimeError: maximum recursion depth exceeded   



xiv    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

 





2    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

download page, then look for the file called ―Python 3.2 Windows Installer (Windows binary -- 

does not include source)‖ and click on its link to download Python for Windows. 

Double-click on the python-3.2.msi file that you've just downloaded to start the Python installer. 

(If it doesn’t start, try right-clicking the file and choosing Install.) Once the installer starts up, 

just keep clicking the Next button and just accept the choices in the installer as you go (no need 

to make any changes). When the install is finished, click Finish. 

Mac OS X Instructions 
Mac OS X 10.5 comes with Python 2.5.1 pre-installed by Apple. Currently, Pygame only 

supports Python 2 and not Python 3. However, the programs in this book work with both Python 

2 and 3. 

The Python website also has some additional information about using Python on a Mac at 

http://docs.python.org/dev/using/mac.html. 

Ubuntu and Linux Instructions 
Pygame for Linux also only supports Python 2, not Python 3. If your operating system is Ubuntu, 

you can install Python by opening a terminal window (from the desktop click on Applications > 

Accessories > Terminal) and entering ―sudo apt-get install python2.7‖ then 

pressing Enter. You will need to enter the root password to install Python, so ask the person who 

owns the computer to type in this password if you do not know it. 

You also need to install the IDLE software. From the terminal, type in ―sudo apt-get 

install idle‖. The root password is also needed to install IDLE (ask the owner of your 

computer to type in this password for you). 

Starting Python 
We will be using the IDLE software to type in our programs and run them. IDLE stands for 

Interactive DeveLopment Environment. The development environment is software that makes it 

easy to write Python programs, just like word processor software makes it easy to write books. 

If your operating system is Windows XP, you should be able to run Python by clicking the Start 



Chapter 1 – Installing Python and Pygame    3 

 



4    



Chapter 1 – Installing Python and Pygame    5 

 

1. number = random.randint(1, 20) 

2. spam = 42 

3. print('Hello world!') 

You do not need to type the ―1.‖ on the left side, or the space that immediately follows it. Just 

type it like this: 

number = random.randint(1, 20) 

spam = 42 

print('Hello world!') 

Those numbers are only used so that this book can refer to specific lines in the code. They are not 

a part of the actual program. 

Aside from the line numbers, be sure to enter the code exactly as it appears. Notice that some of 

the lines don’t begin at the leftmost edge of the page, but are indented by four or eight or more 

spaces. Be sure to put in the correct number of spaces at the start of each line. (Since each 

character in IDLE is the same width, you can count the number of spaces by counting the number 



6    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

Checking Your Code Online 
Some of the programs in this book are a little long. Although it is very helpful to learn Python by 

typing out the source code for these programs, you may accidentally make typos that cause your 

programs to crash. It may not be obvious where the typo is.



Chapter 2 – Pygame Basics    7 

 

CHAPTER 2 ð PYGAME BASICS 
Just like how Python comes with several modules like random, math, or time that provide 

additional functions for your programs, the Pygame framework includes several modules with 

functions for drawing graphics, playing sounds, handling mouse input, and other things. 

This chapter will cover the basic modules and functions that Pygame provides and assumes you 

already know basic Python programming. If you have trouble with some of the programming 

concepts, you can read through the ―Invent Your Own Computer Games with Python‖ book 

online at http://invpy.com/book. This book is aimed at complete beginners to programming. 

The ―Invent with Python‖ book also has a few chapters covering Pygame. You can read them 

online at http://invpy.com/chap17. 

Once you learn more about Pygame, you can view the other modules that Pygame provides from 

the online documentation at http://pygame.org/docs. 



8    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

Remember, do not type the numbers or the periods at the beginning of each line (that’s just for 

reference in this book). 

 1. import pygame, sys 

 2. from pygame.locals import * 

 3.  

 4. pygame.init() 

 5. DISPLAYSURF = pygame.display.set_mode((400, 300)) 

 6. pygame.display.set_caption('Hello World!') 

 7. while True: # main game loop 

 8.     for event in pygame.event.get(): 

 9.         if event.type == QUIT: 

10.             pygame.quit() 

11.             sys.exit() 

12.     pygame.display.update() 

When you run this program, a black window like this will appear: 

 

Yay! You’ve just made the world’s most boring video game! It’s just a blank window with ―Hello 

World!‖ at the top of the window (in what is called the window’s title bar, which holds the 

caption text). 







Chapter 2 – Pygame Basics    11 

 

taking damage (which lowers their health value)



12    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

 7. while True: # main game loop 

 8.     for event in pygame.event.get(): 

Line 8 is a for loop that will iterate over the list of Event objects that was returned by 

pygame.event.get(). On each iteration through the for loop, a variable named event 

will be assigned the value of the next event object in this list. The list of Event objects returned 

from pygame.event.get() will be in the order that the events happened. If the user clicked 

the mouse and then pressed a keyboard key, the Event object for the mouse click would be the 

first item in the list and the Event object for the keyboard press would be second. If no events 

have happened, then pygame.event.get() will return a blank list. 

The QUIT Event and pygame.quit() Function 

 9.         if event.type == QUIT: 

10.             pygame.quit() 

11.             sys.exit() 

Event objects have a member variable (also called attributes or properties) named type 

which tells us what kind of event the object represents. Pygame has a constant variable for each 

of possible types in the pygame.locals modules. Line 9 checks if the Event object’s type is 

equal to the constant QUIT. Remember that since we used the from pygame.locals 

import * form of the import statement, we only have to type QUIT instead of 

pygame.locals.QUIT. 

If the Event object is a quit event, then the pygame.quit() and sys.exit() functions are 

called. The pygame.quit() function is sort of the opposite of the pygame.init() 

function: it runs code that deactivates the Pygame library. Your programs should always call 

pygame.quit() before they call sys.exit() to terminate the program. Normally it doesn’t 

really matter since Python closes it when the program exits anyway. But there is a bug in IDLE 

that causes IDLE to hang if a Pygame program terminates before pygame.quit() is called. 

Since we have no if statements that run code for other types of Event object, there is no event-

hand( )] TJ
30TJ
ET
BT
1 





14    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

The Pygame framework often represents Cartesian Coordinates as a tuple of two integers, such as 

(4, 0) or (2, 2). The first integer is the X coordinate and the second is the Y coordinate. (Cartesian 

Coordinates are covered in more detail in chapter 12 of ―Invent Your Own Computer Games with 

Python‖ at http://invpy.com/chap12) 

A Reminder About Functions, Methods, Constructor Functions, and 

Functions in Modules (and the Difference Between Them) 
Functions and methods are almost the same thing. They can both be called to execute the code in 

them. The difference between a function and a method is that a method will always be attached to 

an object. Usually methods change something about that particular object (you can think of the 

attached object as a sort of permanent argument passed to the method). 

This is a function call of a function named foo(): 

foo() 

This is a method call of a method also named foo(), which is attached to an object stored in a 

variable named duckie: 

duckie.foo() 

A call to a function inside of a module may look like a method call. To tell the difference, you 

need to look at the first name and see if it is the name of a module or the name of a variable that 

contains an object. You can tell that sys.exit() is a call to function inside of a module, 

because at the top of the program will be an import statement like import sys. 

A constructor function is the same thing as a normal function call, except that its return value is 

a new object. Just by looking at source code, a function and constructor function look the same. 

Constructor functions (also called simply a ―constructor‖ or sometimes ―ctor‖ (―see-tor‖) for 

short) are just a name given to functions that return a new object. But usually ctors start with a 

capital letter. This is why when you write your own pro







Chapter 2 – Pygame Basics    17 

 

Transparent Colors 
When you look through a glass window that has a deep red tint, all of the colors behind it have a 

red shade added to them. You can mimic this effect by adding a fourth 0 to 255 integer value to 

your color values. 

This value is known as the alpha value. It is a measure of how opaque (that is, not transparent) a 

color is. Normally when you draw a pixel onto a surface object, the new color completely 

replaces whatever color was already there. But with colors that have an alpha value, you can 

instead just add a colored tint to the color that is already there. 

For example, this tuple of three integers is for the color green: (0, 255, 0). But if we add a 

fourth integer for the alpha value, we can make this a half transparent green color: (0, 255, 

0, 128). An alpha value of 255 is completely opaque (that is, not transparency at all). The 

colors (0, 255, 0) and (0, 255, 0, 255) look exactly the same. An alpha value of 0 

means the color is completely transparent. If you draw any color that has an alpha value of 0 to a 

surface object, it will have no effect, because this color is completely transparent and invisible. 

In order to draw using transparent colors, you must create a Surface object with the 



18    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

 

(Above is a screenshot of a drawing of the Invisible Pink Unicorn.) 

pygame.Color Objects 
You need to know how to represent a color because Pygame’s drawing functions need a way to 

know what color you want to draw with. A tuple of three or four integers is one way. Another 

way is as a pygame.Color object. You can create Color objects by calling the 

pygame.Color() constructor function and passing either three or four integers. You can store 

this Color object in variables just like you can store tuples in variables. Try typing the following 

into the interactive shell: 

>>> import pygame 

>>> pygame.Color(255, 0, 0) 

(255, 0, 0, 255) 

>>> myColor = pygame.Color(255, 0, 0, 128) 

>>> myColor == (255, 0, 0, 128) 

True 

>>> 

Any drawing function in Pygame (which we will learn about in a bit) that has a parameter for 

color can have either the tuple form or Color object form of a color passed for it. Even though 

they are different data types, a Color object is equal to a tuple of four integers if they both 

represent the same color (just like how 42 == 42.0 will evaluate to True). 

Now that you know how to represent colors (as a pygame.Color object or a tuple of three or 

four integers for red, green, blue, and optionally alpha) and coordinates (as a tuple of two integers 

for X and Y), let’s learn about pygame.Rect objects so we can start using Pygame’s drawing 

functions. 

Rect Objects 
Pygame has two ways to represent rectangular areas (just like there are two ways to represent 







Chapter 2 – Pygame Basics    21 

 

 3.  

 4. pygame.init() 

 5.  

 6. # set up the window 

 7. DISPLAYSURF = pygame.display.set_mode((500, 400), 0, 32) 

 8. pygame.display.set_caption('Drawing') 

 9.  

10. # set up the colors 

11. BLACK = (  0,   0,   0) 

12. WHITE = (255, 255, 255) 

13. RED   = (255,   0,   0) 

14. GREEN = (  0, 255,   0) 

15. BLUE  = (  0,   0, 255) 

16.  

17. # draw on the surface object 

18. DISPLAYSURF.fill(WHITE) 

19. pygame.draw.polygon(DISPLAYSURF, GREEN, ((146, 0), (291, 106), (236, 277), 

(56, 277), (0, 106))) 

20. pygame.draw.line(DISPLAYSURF, BLUE, (60, 60), (120, 60), 4) 

21. pygame.draw.line(DISPLAYSURF, BLUE, (120, 60), (60, 120)) 

22. pygame.draw.line(DISPLAYSURF, BLUE, (60, 120), (120, 120), 4) 

23. pygame.draw.circle(DISPLAYSURF, BLUE, (300, 50), 20, 0) 

24. pygame.draw.ellipse(DISPLAYSURF, RED, (300, 250, 40, 80), 1) 

25. pygame.draw.rect(DISPLAYSURF, RED, (200, 150, 100, 50)) 

26.  

27. pixObj = pygame.PixelArray(DISPLAYSURF) 

28. pixObj[480][380] = BLACK 

29. pixObj[482][382] = BLACK 

30. pixObj[484][384] = BLACK 

31. pixObj[486][386] = BLACK 

32. pixObj[488][388] = BLACK 

33. del pixObj 

34.  

35. # run the game loop 

36. while True: 

37.     for event in pygame.event.get(): 

38.         if event.type == QUIT: 

39.             pygame.quit() 

40.             sys.exit() 

41.     pygame.display.update() 

When this program is run, the following window is displayed 





Chapter 2 – Pygame Basics    23 

 

 pygame.draw.line(surface, color, start_point, end_point, width) – This function draws a 

line between the start_point and end_point parameters. 

 pygame.draw.lines(surface, color, closed, pointlist, width) – This function draws a series 

of lines from one point to the next, much like pygame.draw.polygon(). The only 



24    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

functions can still be called on it, but it cannot have images like PNG or JPG images drawn on it 

with the blit() method. (The blit() method is explained later in this chapter.) 

If you want to see if a Surface object is locked, the get_locked() Surface method will return 

True if it is locked and False if it is not. 

The PixelArray object that is returned from pygame.PixelArray() can have individual 

pixels set by accessing them with two indexes. For example, line 28’s pixObj[480][380] = 

BLACK will set the pixel at X coordinate 480 and Y coordinate 380 to be black (remember that 

the BLACK variable stores the color tuple (0, 0, 0)). 

To tell Pygame that you are finished drawing individual pixels, delete the PixelArray object with 

a del statement. This is what line 33 does. Deleting the PixelArray object will ―unlock‖ the 

Surface object so that you can once again draw images on it. If you forget to delete the 

PixelArray object, the next time you try to blit (that is, draw) an image to the Surface the program 

will raise an error that says, ―pygame.error: Surfaces must not be locked 

during blit‖. 

The pygame.display.update() Function 
After you are done calling the drawing functions to make the display Surface object look the way 

you want, you must call pygame.display.update() to make the display Surface actually 

appear on the user’s monitor. 

The one thing that you must remember is that pygame.display.update() will only make 

the display Surface (that is, the Surface object that was returned from the call to 

pygame.display.set_mode()) appear on the screen. If you want the images on other 

Surface objects to appear on the screen, you must ―blit‖ them (that is, copy them) to the display 

Surface object with the blit() method (which is explained next in the ―Drawing Images‖ 

section). 

Animation 
Now that we know how to get the Pygame framework to draw to the screen



Chapter 2 – Pygame Basics    25 

 

 

If you changed the window so that 3, 0 was black and 4,0 was white, it would look like this: 

 

To the user, it looks like the black pixel has ―moved‖ over to the left. If you redrew the window 

to have the black pixel at 2, 0, it would continue to look like the black pixel is moving left: 

 

It may look like the black pixel is moving, but this is just an illusion. To the computer, it is just 

showing three different images that each just happen to have one black pixel. Consider if the 

three following images were rapidly shown on the screen: 

 

To the user, it would look like the cat is moving towards the squirrel. But to the computer, they’re 



26    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

 1. import pygame, sys 

 2. from pygame.locals import * 

 3.  

 4. pygame.init() 

 5.  

 6. FPS = 30 # frames per second setting 

 7. fpsClock = pygame.time.Clock() 

 8.  

 9. # set up the window 

10. DISPLAYSURF = pygame.display.set_mode((400, 300), 0, 32) 

11. pygame.display.set_caption('Animation') 

12. 

13. WHITE = (255, 255, 255) 

14. catImg = pygame.image.load('cat.png') 

15. catx = 10 

16. caty = 10 

17. direction = 'right' 









30    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

4.



Chapter 2 – Pygame Basics    31 

 

pygame.draw.lines(), except they will draw anti-





Chapter 3 – Memory Puzzle    33 

 

CHAPTER 3 ð MEMORY 

PUZZLE 

 

How to Play Memory Puzzle 
In the Memory Puzzle game, several icons are covered up by white boxes. There are two of each 

icon. The player can click on two boxes to see what icon is behind them. If the icons match, then 

those boxes remain uncovered. The player wins when all the boxes on the board are uncovered. 

To give the player a hint, the boxes are quickly uncovered once at the beginning of the game. 

Nested for Loops 
One concept that you will see in Memory Puzzle (and most of the games in this book) is the use 

of a for loop inside of another for loop. These are called nested for loops. Nested for loops 

are handy for going through every possible combination of two lists. Type the following into the 

interactive shell: 

>>> for x in [0, 1, 2, 3, 4]: 

...     for y in ['a', 'b', 'c']: 

...         print(x, y) 

... 

0 a 

0 b 

0 c 

1 a 

1 b 

1 c 

2 a 



34    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

2 b 

2 c 

3 a 

3 b 

3 c 

4 a 

4 b 

4 c 

>>> 







Chapter 3 – Memory Puzzle    37 

 

 83.         if boxx != None and boxy != None: 

 84.             # The mouse is currently over a box. 

 85.             if not revealedBoxes[boxx][boxy]: 

 86.                drawHighlightBox(boxx, boxy) 

 87.             if not revealedBoxes[boxx][boxy] and mouseClicked: 

 88.                 revealBoxesAnimation(mainBoard, [(boxx, boxy)]) 

 89.                 revealedBoxes[boxx][boxy] = True # set the box as 

"revealed" 

 90.                 if firstSelection == None: # the current box was the first 

box clicked 

 91.                     firstSelection = (boxx, boxy) 

 92.                 else: # the current box was the second box clicked 

 93.                     # Check if there is a match between the two icons. 

 94.                     icon1shape, icon1color = getShapeAndColor(mainBoard, 

firstSelection[0], firstSelection[1]) 

 95.                     icon2shape, icon2color = getShapeAndColor(mainBoard, 

boxx, boxy) 

 96.  

 97.                     if icon1shape != icon2shape or icon1color != 

icon2color: 

 98.                         # Icons don't match. Re-cover up both selections. 

 99.                         pygame.time.wait(1000) # 1000 milliseconds = 1 sec 

100.                         







40    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

204.     # color value for x, y spot is stored in board[x][y][1] 

205.     return board[boxx][boxy][0], board[boxx][boxy][1] 

206.  

207.  

208. def drawBoxCovers(board, boxes, coverage): 

209.     # Draws boxes being covered/revealed. "boxes" is a list 

210.     # of two-item lists, which have the x & y spot of the box. 

211.     for box in boxes: 

212. 



Chapter 3 – Memory Puzzle    41 

 

247.  

248. def drawHighlightBox(boxx, boxy): 

249.     



42    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

292.     main() 

Credits and Imports 

  1. # Memory Puzzle 

  2. # By Al Sweigart al@inventwithpython.com 

  3. # http://inventwithpython.com/pygame 

  4. # Released under a "Simplified BSD" license 

  5.  

  6. import random, pygame, sys 

  7. from pygame.locals import * 

At the top of the program are comments about what the game is, who made it, and where the user 

could find more information. There’s also a note that the source code is freely copyable under a 

―Simplified BSD‖ license. The Simplified BSD license is more appropriate for software than the 

Creative Common license (which this book is released under), but they basically mean the same 

thing: People are free to copy and share this game. More info about licenses can be found at 

http://invpy.com/licenses. 

This program makes use of many functions in other modules, so it imports those modules on line 

6. Line 7 is also an import statement in the from (module name) import * format, 

which means you do not have to type the module name in front of it. There are no functions in the 

pygame.locals module, but there are several constant variables in it that we want to use such 

as MOUSEMOTION, KEYUP, or QUIT. Using this style of import statement, we only have to 

type MOUSEMOTION rather than pygame.locals.MOUSEMOTION. 

..



Chapter 3 – Memory Puzzle    43 

 

much better, especially since we might use the integer value 40 for something else besides the 

size of the white boxes, and changing that 40 accidentally would cause bugs in our program. 

Second, it makes the code more readable. Go down to the next section and look at line 18. This 

sets up a calculation for the XMARGIN constant, which is how many pixels are on the side of the 

entire board. It is a complicated looking expression, but you can carefully piece out what it 

means. Line 18 looks like this: 

XMARGIN = int((WINDOWWIDTH - (BOARDWIDTH * (BOXSIZE + GAPSIZE))) / 2) 

But if line 18 didn’t use constant variables, it would look like this: 

XMARGIN = int((640 – (10 * (40 + 10))) / 2) 

Now it becomes impossible to remember what exactly the programmer intended to mean. These 





Chapter 3 – Memory Puzzle    45 

 

  File "C:\book2svn\src\memorypuzzle.py", line 292, in <module> 

    main() 

  File "C:\book2svn\src\memorypuzzle.py", line 58, in main 

    mainBoard = getRandomizedBoard() 

  File "C:\book2svn\src\memorypuzzle.py", line 149, in getRandomizedBoard 



46    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

tuples are called RGB values. Notice the spacing of the tuples on lines 22 to 31 are such that the 

R, G, and B integers line up. In Python the indentation (that is, the space at the beginning of the 

line) is needs to be exact, but the spacing in the rest of the line is not so strict. By spacing the 

integers in the tuple out, we can clearly see how the RGB values compare to each other. (More 

info on spacing and indentation is as http://invpy.com/whitespace.) 



Chapter 3 – Memory Puzzle    47 

 

Making Sure We Have Enough Icons 

 44. ALLCOLORS = (RED, GREEN, BLUE, YELLOW, ORANGE, PURPLE, CYAN) 

 45. ALLSHAPES = (DONUT, SQUARE, DIAMOND, LINES, OVAL) 

 46. assert len(ALLCOLORS) * len(ALLSHAPES) * 2 >= BOARDWIDTH * BOARDHEIGHT, 

"Board is too big for the number of shapes/colors defined." 

In order for our game program to be able to create icons of every possible color and shape 

combination, we need to make a tuple that holds all of these values. There is also another 

assertion on line 46 to make sure that there are enough color/shape combinations for the size of 



48    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

There is a silly benefit and an important benefit to tuple’s immutability. The silly benefit is that 

code that uses tuples is slightly faster than code that uses lists. (Python is able to make some 

optimizations knowing that the values in a tuple will never change.) But having your code run a 

few nanoseconds faster is not important. 

The important benefit to using tuples is similar to the benefit of using constant variables: it’s a 

sign that the value in the tuple will never change, so anyone reading the code later will be able to 

say, ―I can expect that this tuple will always be the same. Otherwise the programmer would have 

used a list.‖ This also lets a future programmer reading your code say, ―If I see a list value, I 

know that it could be modified at some point in this program. Otherwise, the programmer who 

wrote this code would have used a tuple.‖ 

You can still assign a new tuple value to a variable: 

>>> tupleVal = (1, 2, 3) 

>>> tupleVal = (1, 2, 3, 4) 

The reason this code works is because the code isn’t changing the (1, 2, 3) tuple on the 

second line. It is assigning an entirely new tuple (1, 2, 3, 4) to the tupleVal, and 

overwriting the old tuple value. You cannot however, use the square brackets to modify an item 

in the tuple. 

Strings are also an immutable data type. You can use the square brackets to read a single 

character in a string, but you cannot change a single character in a string: 

>>> strVal = 'Hello' 

>>> strVal[1] 







Chapter 3 – Memory Puzzle    51 

 

Data Structures and 2D Lists 

 58.     







54    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

If the event object was a either a QUIT event or a KEYUP event for the Esc key, then the program 

should terminate. Otherwise, in the event of a MOUSEMOTION event (that is, the mouse cursor 

has moved) or MOUSEBUTTONUP event (that is, a mouse button was pressed earlier and now the 

button was let up), the position of the mouse cursor should be stored in the mousex and mousey 

variables. If this was a MOUSEBUTTONUP event, mouseClicked should also be set to True. 

Once we have handled all of the events, the values stored in mousex, mousey, and 

mouseClicked will tell us any input that player has given us. Now we should update the game 

state and draw the results to the screen. 

Checking Which Box The Mouse Cursor is Over 

 82.         boxx, boxy = getBoxAtPixel(mousex, mousey) 

 83.         if 



Chapter 3 – Memory Puzzle    55 

 

 89.                 revealedBoxes[boxx][boxy] = True # set the box as 

"revealed" 



56    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

Handling a Mismatched Pair of Icons 

 97.                     if icon1shape != icon2shape or icon1color != 

icon2color: 

 98.                         # Icons don't match. Re-cover up both selections. 

 99.                         pygame.time.wait(1000) # 1000 milliseconds = 1 sec 

100.                         coverBoxesAnimation(mainBoard, 

[(firstSelection[0], firstSelection[1]), (boxx, boxy)]) 

101.                         revealedBoxes[firstSelection[0]][firstSelection 

[1]] = False 

102.                         revealedBoxes[boxx][boxy] = False 

The if statement on line 97 checks if either the shapes or colors of the two icons don’t match. If 

this is the case, then we want to pause the game for 1000 milliseconds (which is the same as 1 

second) by calling pygame.time.wait(1000) so that the player has a chance to see that the 

two icons don’t match. Then the ―cover up‖ animation plays for both boxes. We also want to 

update the game state to mark these boxes as not revealed (that is, covered up). 

Handling If the Player Won 

103.                     elif hasWon(revealedBoxes): # check if all pairs found 

104.                         gameWonAnimation(mainBoard) 

105.                         pygame.time.wait(2000) 

106.  

107.                         # Reset the board 

108.                         mainBoard = getRandomizedBoard() 

109.                         revealedBoxes = generateRevealedBoxesData(False) 

110.  

111.                         # Show the fully unrevealed board for a second. 

112.                         drawBoard(mainBoard, revealedBoxes) 

113.                         pygame.display.update() 

114.                         pygame.time.wait(1000) 

115.  

116.                         # Replay the start game animation. 

117.                         startGameAnimation(mainBoard)  

118.                     firstSelection = None # reset firstSelection variable 

Otherwise, if line 97’s condition was False, then the two icons must be a match. The program 

doesn’t really have to do anything else to the boxes at that point: it can just leave both boxes in 

the revealed state. However, the program should check if this was the last pair of icons on the 

board to be matched. This is done inside our hasWon() function, which returns True if the 

board is in a winning state (that is, all of the boxes are revealed).  





58    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 







Chapter 3 – Memory Puzzle    61 

 

Note that even though the largest index of theList would be 19



62    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

 

The leftTopCoordsOfBox() function will take box coordinates and return pixel 

coordinates. Because a box takes up multiple pixels on the screen, we will always return the 

single pixel at the top left corner of the box. This value will be returned as a two-integer tuple. 

The leftTopCoordsOfBox() function will often be used when we need pixel coordinates for 

drawing these boxes. 

Converting from Pixel Coordinates to Box Coordinates 

171. def getBoxAtPixel(x, y): 

172.     for boxx in range(BOARDWIDTH): 

173.         for boxy in range(BOARDHEIGHT): 

174.             left, top = leftTopCoordsOfBox(boxx, boxy) 

175.             boxRect = pygame.Rect(left, top, BOXSIZE, BOXSIZE) 

176.             if boxRect.collidepoint(x, y): 

177.                 return (boxx, boxy) 

178.     return (None, None) 

We will also need a function to convert from pixel coordinates (which the mouse clicks and 

mouse movement events use) to box coordinates (so we can find out over which box the mouse 

event happened). Rect objects have a collidepoint() method that you can pass X and Y 

coordinates too and it will return True if the coordinates are inside (that is, collide with) the Rect 

object’s area. 



Chapter 3 – Memory Puzzle    63 

 

In order to find which box the mouse coordinates are over, we will go through each box’s 

coordinates and call the collidepoint() method on a Rect object with those coordinates. 

When collidepoint() returns True, we know we have found the box that was clicked on or 

moved over and will return the box coordinates. If none of them return True, then the 

getBoxAtPixel() function will return the value (None, None). This tuple is returned 

instead of simply returning None because the caller of 

. Te



64    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

188.         pygame.draw.circle(DISPLAYSURF, color, (left + half, top + half), 

half - 5) 

189.         pygame.draw.circle(DISPLAYSURF, BGCOLOR, (left + half, top + 

half), quarter - 5) 

190.     elif shape == SQUARE: 

191.         pygame.draw.rect(DISPLAYSURF, color, (left + quarter, top + 

quarter, BOXSIZE - half, BOXSIZE - half)) 

192.     elif shape == DIAMOND: 

193.         pygame.draw.polygon(DISPLAYSURF, color, ((left + half, top), (left 

+ BOXSIZE - 1, top + half), (left + half, top + BOXSIZE - 1), (left, top + 

half))) 

194.     elif shape == LINES: 

195.         for i in range(0, BOXSIZE, 4): 

196.             pygame.draw.line(DISPLAYSURF, color, (left, top + i), (left + 

i, top)) 

197.             pygame.draw.line(DISPLAYSURF, color, (left + i, top + BOXSIZE 

- 1), (left + BOXSIZE - 1, top + i)) 

198.     elif shape == OVAL: 

199.         pygame.draw.ellipse(DISPLAYSURF, color, (left, top + quarter, 

BOXSIZE, half)) 

Each of the donut, square, diamond, lines, and oval functions require different drawing primitive 

function calls to make.  

Syntactic Sugar with Getting a Board Space’s Icon’s Shape and Color 

202. 



Chapter 3 – Memory Puzzle    65 

 

212.         left, top = leftTopCoordsOfBox(box[0], box[1]) 

213.         pygame.draw.rect(DISPLAYSURF, BGCOLOR, (left, top, BOXSIZE, 

BOXSIZE)) 

214.         shape, color = getShapeAndColor(board, box[0], box[1]) 

215.         drawIcon(shape, color, box[0], box[1]) 

216. 



66    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

230.     for coverage in range(0, BOXSIZE + REVEALSPEED, REVEALSPEED): 

231.         drawBoxCovers(board, boxesToCover, coverage) 

Remember that an animation is simply just displaying different images for brief moments of time, 

and together they make it seem like things are moving on the screen. The 

revealBoxesAnimation() and coverBoxesAnimation() only need to draw an icon 



Chapter 3 – Memory Puzzle    67 

 

245.                 drawIcon(shape, color, boxx, boxy) 

The drawBoard() function makes a call to drawIcon() for each of the boxes on the board. 

The nested for loops on lines 236 and 237 will loop through every possible X and Y coordinate 

for the boxes, and will either draw the icon at that location or draw a white square instead (to 

represent a covered up box). 

Drawing the Highlight 

248. def drawHighlightBox(boxx, boxy): 

249.     left, top = leftTopCoordsOfBox(boxx, boxy) 

250.     pygame.draw.rect(DISPLAYSURF, HIGHLIGHTCOLOR, (left - 5, top - 5, 

BOXSIZE + 10, BOXSIZE + 10), 4) 

To help the player recognize that they can click on a covered box to reveal it, we will make a blue 

outline appear around a box to highlight it. This outline is drawn with a call to 

pygame.draw.rect() to make a rectangle with a width of 4 pixels. 

The “Start Game” Animation 

253. def startGameAnimation(board): 

254.     # Randomly reveal the boxes 8 at a time. 

255.     coveredBoxes = generateRevealedBoxesData(False) 

256.     boxes = [] 

257.     for x in range(BOARDWIDTH): 

258.         for y in range(BOARDHEIGHT): 

259.             boxes.append( (x, y) ) 

260.     random.shuffle(boxes) 

261.     boxGroups = splitIntoGroupsOf(8, boxes) 

The animation that plays 



68    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

the first 8 boxes in this list (and each group of 8 boxes afterwards), it will be random group of 8 

boxes. 

To get the lists of 8 boxes, we call our splitIntoGroupsOf() function, passing 8 and the 

list in boxes. The list of lists that the function returns will be stored -4(i)-4] TJ
ET
BTv6(err4(l)-4( ab(st)4(s -4(stnag)15)-4] T
/F9 10.92 Tf
1 0 0 1 99.624 583.18 Tm
[ Tm66 Tc[(boxes)] TJ
ETG)] TJBT
/F1 11.04 Tf
1 0 0 1 132.62 583.181Tm
[ Tm66 Tc[(boT)-8(hBT
1 0 0 1 100.46 622.334Tc[([ Tm66 Tc[(T
 EMC  /P <</MCID 1>> BDC BT2/F1 9 Tf
1 0 2 14 0 1 72.024 38.52 Tm
[540)-4(he )9(R )1eve)3( )] Ta0 2 14 0 1 72.024 38.52 Tm
 Tm624)-4( ab(st)4(s -4(stn Tc[(spliobBT
 TmBDC.:3.1oBDC.vJ
Eer-6(.4 Tm79(w)2(al)
[m79 Tm639())rr4BoBDC.x4)-4m66 Tc[(boT)-8(h)7(si)-6(5/F1938.52 Tm
 Tm6 0 1 72.024 38.52 Tm
[540)-43he )9(R )1eve)36(u)-6(e)4(stio)-7(n)-6162 1(l)-4[(l02 )] T(l02 
E -.6227
 EM263T
/F1 9.96 Tf
1 0 0 1 Tmn)-6162 1(l)-4(T
 EMC  /P <</MCID 1>> BDC BT93
1 0 162 1(l)-4[ )] TJ
ET [(sp 6(y))6(ttp)-3(://i)4(> BDC BT2.52 0 162 1(l)-4[(dr(splio-4]BJ
Ea9(l)dr)-3(bJ
Ea9-(l)dr60(gr6004 6.vJo-4er(spedr60BJo-4()6-4m66 Tc[( )] TJ
ET
B))] TJ
( )490 162 1(l)-4[(6(ttp)-3(://q] T(00125 -.6122/ 576.09o)-.612 re
W* n-4[ )] 65F1 / 53352 0 0 8 /Typere
f*] 65F1 / 534)-4/Type 0 8 re
f*] 66.14/ 53352 0 0 8  0 8001 re
f*] 66.14/ 53352 0 0 8  0 8001 re
f*] 66.
1 0 34)-44ET87e 0 8 re
f*] 66.
1 0 3352 04ET87e 0 8001 re
f*] 51 0 0 53352 0 0 8001 /Typere
f*] 509.5 534)-4/Type 0 8 re
f*] 509.5 53352 0 0 8001  0 8001 re
f*] 509.5 53352 0 0 8001  0 8001 re
f*] 65F1 / 515.5  0 8 /Tm4 re
f*] 66.14/ 515.5  0 8 /Tm4 re
f*] 51 0 0 515.5  0 8001 /Tm4 re
f*] 509.5 515.5  0 8001 /Tm4 re
f*] Q4 38.52 Tm
[540)-441(t)-4(he )9(l)-4(i)6(st)4(0652 0l)-4[(l02 )] T(l02 
E -.6227
 EM264T
/F1 9.96 Tf
1 0 0 1 Tmn)-60652 0l)-4st)-6 /P <</MCID 1>> BDC BT99(st)4(0652 0l)-4[ 



Chapter 3 – Memory Puzzle    69 

 

on line 276. This way the program will alternate between drawing two different background 

colors. 



70    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

Second, this also lets you import the program so that you can call and test individual functions. If 

the memorypuzzle.py file is in the C:\Python32 folder, then you can import it from the interactive 

shell. Type the following to test out the splitIntoGroupsOf() and getBoxAtPixel() 

functions to make sure they return the correct return values: 

>>> import memorypuzzle 

>>> memorypuzzle.splitIntoGroupsOf(3, [0,1,2,3,4,5,6,7,8,9]) 

[[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]] 

>>> memorypuzzle.getBoxAtPixel(0, 0) 

(None, None) 

>>> memorypuzzle.getBoxAtPixel(150, 150) 

(1, 1) 



Chapter 3 – Memory Puzzle    71 

 

http://invpy.com/memorypuzzle_obfuscated.py) and run it you will find it runs exactly the same 

as the code at the beginning of this chapter. But if there was a bug with this code, it would be 

impossible to read the code and understand what’s going on, much less fix the bug. 

The computer doesn’t mind code as unreadable as this. It’s all the same to it.



72    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

                    if q != r or fff != ggg: 

                        pygame.time.wait(1000) 

                        p(i, [(h[0], h[1]), (bb, ee)]) 

                        hh[h[0]][h[1]] = False 

                        hh[bb][ee] = False 

                    elif ii(hh): 

                        jj(i) 

                        pygame.time.wait(2000) 

                        i = c() 

                        hh = d(False) 

                        f(i, hh) 

                        pygame.display.update() 

                        pygame.time.wait(1000) 

                        g(i) 

                    h = None 

        pygame.display.update() 



Chapter 3 – Memory Puzzle    73 

 

    for bb in range(10): 

        for ee in range(7): 

            oo, ddd = aa(bb, ee) 

            aaa = pygame.Rect(oo, ddd, 40, 40) 

            if aaa.collidepoint(x, y): 

                return (bb, ee) 

    return (None, None) 

def w(ss, tt, bb, ee): 

    oo, ddd = aa(bb, ee) 

    if ss == 'a': 

        pygame.draw.circle(b, tt, (oo + 20, ddd + 20), 15) 

        pygame.draw.circle(b, (60, 60, 100), (oo + 20, ddd + 20), 5) 

    elif ss == 'b': 

        pygame.draw.rect(b, tt, (oo + 10, ddd + 10, 20, 20)) 

    elif ss == 'c': 

        pygame.draw.polygon(b, tt, ((oo + 20, ddd), (oo + 40 - 1, ddd + 20), 

(oo + 20, ddd + 40 - 1), (oo, ddd + 20))) 

    elif ss == 'd': 

        for i in range(0, 40, 4): 

            pygame.draw.line(b, tt, (oo, ddd + i), (oo + i, ddd)) 

            pygame.draw.line(b, tt, (oo + i, ddd + 39), (oo + 39, ddd + i)) 

    elif ss == 'e': 

        pygame.draw.ellipse(b, tt, (oo, ddd + 10, 40, 20)) 

def s(bbb, bb, ee): 

    return bbb[bb][ee][0], bbb[bb][ee][1] 



74    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

            else: 

                ss, tt = s(bbb, bb, ee) 

                w(ss, tt, bb, ee) 

def n(bb, ee): 

    oo, ddd = aa(bb, ee) 

    pygame.draw.rect(b, (0, 0, 255), (oo - 5, ddd - 5, 50, 50), 4) 

def g(bbb): 

    mm = d(False) 

    boxes = [] 

    for x in range(10): 

        for y in range(7): 

            boxes.append( (x, y) ) 

    random.shuffle(boxes) 

    kk = t(8, boxes) 

    f(bbb, mm) 

    for nn in kk: 

        o(bbb, nn) 

        p(bbb, nn) 

def jj(bbb): 

    mm = d(True) 

    tt1 = (100, 100, 100) 

    tt2 = (60, 60, 100) 

    for i in range(13): 

        tt1, tt2 = tt2, tt1 

        b.fill(tt1) 

        f(bbb, mm) 

        pygame.display.update() 

        pygame.time.wait(300) 

def ii(hh): 

    for i in hh: 

        if False in i: 

            return False 

    return True 

if __name__ == '__main__': 

    hhh() 

Never write code like this. If you program like this while facing the mirror in a bathroom with the 

lights turned off, the ghost of Ada Lovelace will come out of the mirror and throw you into the 

jaws of a Jacquard loom. 

Summary, and a Hacking Suggestion 
This chapter covers 



Chapter 3 – Memory Puzzle    75 

 

and different coordinate systems in the same program) so they won’t be explained again to keep 

this book short. 

One idea to try out to understand how the code works is to intentionally break it by commenting 

out random lines. Doing this to some of the lines will probably cause a syntactic error that will 

prevent the script from running at all. But commenting out other lines will result in weird bugs 

and other cool effects. Try doing this and then figure out why a program has the bugs it does. 

This is also the first step in being able to add your own secret cheats or hacks to the program. By 

breaking the program from what it normally does, you can learn how to change it to do something 

neat effect (like secretly giving you hints on how to solve the puzzle). Feel free to experiment. 

You can always save a copy of the unchanged source code in a different file if you want to play 

the regular game again. 

In fact, if you’d like some practice fixing bugs, there are several versions of this game’s source 

code that have small bugs in them. You can download these buggy versions from 

http://invpy.com/buggy



76    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

  





78    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

 13. WINDOWWIDTH = 640 

 14. WINDOWHEIGHT = 480 

 15. FPS = 30 

 16. BLANK = None 

 17.  

 18. #                 R    G    B 

 19. BLACK =         (  0,   0,   0) 

 20. WHITE =         (255, 255, 255) 

 21. BRIGHTBLUE =    (  0,  50, 255) 

 22. DARKTURQUOISE = (  3,  54,  73) 

 23. GREEN =         (  0, 204,   0) 

 24.  

 25. BGCOLOR = DARKTURQUOISE 

 26. TILECOLOR = GREEN 

 27. TEXTCOLOR = WHITE 

 28. BORDERCOLOR = BRIGHTBLUE 

 29. BASICFONTSIZE = 20 

 30.  

 31. BUTTONCOLOR = WHITE 

 32. BUTTONTEXTCOLOR = BLACK 

 33. MESSAGECOLOR = WHITE 

 34.  

 35. XMARGIN = int((WINDOWWIDTH - (TILESIZE * BOARDWIDTH + (BOARDWIDTH - 1))) / 

2) 

 36. YMARGIN = int((WINDOWHEIGHT - (TILESIZE * BOARDHEIGHT + (BOARDHEIGHT - 

1))) / 2) 

 37.  

 38. UP = 'up' 

 39. DOWN = 'down' 

 40. LEFT = 'left' 

 41. RIGHT = 'right' 

 42.  

 43. def main(): 

 44.     global FPSCLOCK, DISPLAYSURF, BASICFONT, RESET_SURF, RESET_RECT, 

NEW_SURF, NEW_RECT, SOLVE_SURF, SOLVE_RECT 

 45.  

 46.     pygame.init() 

 47.     



Chapter 4 – Slide Puzzle    79 

 

 54.     



80    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

 9280







Chapter 4 – Slide Puzzle    83 

 

220.     textRect = textSurf.get_rect() 

221.     textRect.center = left + int(TILESIZE / 2) + adjx, top + int(TILESIZE 

/ 2) + adjy 

222.     DISPLAYSURF.blit(textSurf, textRect) 

223.  

224.  

225. 



84    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

263.         movey = blanky - 1 

264.     elif direction == LEFT: 

265.         movex = blankx + 1 

266.         movey = blanky 

267.     elif direction == RIGHT: 

268.         movex = blankx - 1 

269.         movey = blanky 

270.  

271.     # prepare the base surface 

272.     drawBoard(board, message) 

273.     baseSurf = DISPLAYSURF.copy() 

274.     # draw a blank space over the moving tile on the baseSurf Surface. 

275.     moveLeft, moveTop = getLeftTopOfTile(movex, movey) 

276.     pygame.draw.rect(baseSurf, BGCOLOR, (moveLeft, moveTop, TILESIZE, 

TILESIZE)) 

277.  

278.     for i in range(0, TILESIZE, animationSpeed): 

279.         # animate the tile sliding over 

280.         checkForQuit() 

281.         DISPLAYSURF.blit(baseSurf, (0, 0)) 

282.         if direction == UP: 

283.             drawTile(movex, movey, board[movex][movey], 0, -i) 

284.         if direction == DOWN: 

285.             drawTile(movex, movey, board[movex][movey], 0, i) 

286.         if direction == LEFT: 

287.             drawTile(movex, movey, board[movex][movey], -i, 0) 

288.         if direction == RIGHT: 

289.             drawTile(movex, movey, board[movex][movey], i, 0) 

290.  

289



Chapter 4 – Slide Puzzle    85 

 

307.         makeMove(board, move) 

308.         sequence.append(move) 

309.         lastMove = move 

310.     return (board, sequence) 

311.  

312.  

313. def resetAnimation(board, allMoves): 

314.     # make all of the moves in allMoves in reverse. 

315.     revAllMoves = allMoves[:] # gets a copy of the list 

316.     revAllMoves.reverse() 

317.  

318.     for move in revAllMoves: 

319.         if move == UP: 

320.             oppositeMove = DOWN 

321.         elif move == DOWN: 

322.             oppositeMove = UP 

323.         elif move == RIGHT: 

324.             oppositeMove = LEFT 

325.         elif move == LEFT: 

326.             oppositeMove = RIGHT 

327.         slideAnimation(board, oppositeMove, '', int(TILESIZE / 2)) 

328.         makeMove(board, oppositeMove) 

329.  

330.  

331. 





Chapter 4 – Slide Puzzle    87 

 

 52.     # Store the option buttons and their rectangles in OPTIONS. 

 53.     



88    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

Solving a slide puzzle can be really tricky. We could program the computer to do it, but that 

would require us to figure out an algorithm that can solve the slide puzzle. That would be very 

difficult and involve a lot of cleverness and effort to put into this program.  

Fortunately, there’s an easier way. We could just have the computer memorize all the random 

slides it made when it created the board data structure, and then the board can be solved just by 

performing the opposite slide. Since the board originally started in the solved state, undoing all 

the slides would return it to the solved state. 

For example, below we perform a ―right‖ slide on the board on the left side of the page, which 

leaves the board in the state that is on the right side of the page: 

 

After the right slide, if we do the opposite slide (a left slide) then the board will be back in the 

original state. So to get back to the original state after several slides, we just have to do the 

opposite slides in reverse order. If we did a right slide, then another right slide, then a down slide, 

we would have to do an up slide, left slide, and left slide to undo those first three slides. This is 

much easier than writing a function that can solve these puzzles simply by looking at the current 

state of them. 

The Main Game Loop 

 61.     while True: # main game loop 

 62.         slideTo = None # the direction, if any, a tile should slide 

 63.         msg = '' # contains the message to show in the upper left corner. 

 64.         if mainBoard == SOLVEDBOARD: 

 65.             msg = 'Solved!' 

 66.  

 67.         drawBoard(mainBoard, msg) 

In the main game loop, the slideTo variable will track which direction the player wants to slide 

a tile (it starts off at the beginning of the game loop as None and is set later) and the msg 

variable tracks what string to display at the top of the window. The program does a quick check 

on line 64 to see if the board data structure has the same value as the solved board data structure 

stored in SOLVEDBOARD. If so, then the msg variable is changed to the string 'Solved!'. 



Chapter 4 – Slide Puzzle    89 

 

This won’t appear on the screen until drawBoard() has been called to draw it to the 

DISPLAYSURF Surface object (which is done on line 67) and pygame.display.update() 

is called to draw the display Surface object on the actual computer screen (which is done on line 

291 at the end of the game loop). 

Clicking on the Buttons 

 69.         checkForQuit() 

 70.         for event in pygame.event.get(): # event handling loop 

 71.             if event.type == MOUSEBUTTONUP: 

 72.                 spotx, spoty = getSpotClicked(mainBoard, event.pos[0], 

event.pos[1]) 

 73.  

 74.                 if (spotx, spoty) == (None, None)







92    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

 



Chapter 4 – Slide Puzzle    93 

 

125.     for event in pygame.event.get(KEYUP): # get





Chapter 4 – Slide Puzzle    95 

 

159.     blankx, blanky = getBlankPosition(board) 



96    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

of the line). This will let us split up a ―line of code‖ across multiple lines to look pretty, rather 

than just have one very long unreadable line. 

Because the parts of this expression in parentheses are joined by or operators, only one of them 

needs to be True for the entire expression to be True. Each of these parts checks what the 

intended move is and then sees if the coordinate of the blank space allows that move. 

Getting a Not-So-Random Move 

179. def getRandomMove(board, lastMove=None): 

180.     # start with a full list of all four moves 

181.     validMoves = [UP, DOWN, LEFT, RIGHT] 

182.  

183.     # remove moves from the list as they are disqualified 

184.     if lastMove == UP or not isValidMove(board, DOWN): 

185.         validMoves.remove(DOWN) 

186.     if lastMove == DOWN or not isValidMove(board, UP): 

187.         validMoves.remove(UP) 

188.     if lastMove == LEFT or not isValidMove(board, RIGHT): 

189.         validMoves.remove(RIGHT) 

190.     if lastMove == RIGHT or not isValidMove(board, LEFT): 

191.         validMoves.remove(LEFT) 

192.  

193.     # return a random move from the list of remaining moves 

194.     return random.choice(validMoves) 

At the beginning of the game, we start with the board data structure in the solved, ordered state 

and create the puzzle by randomly sliding around tiles. To decide which of the four directions we 

should slide, we’ll call our getRandomMove() function. Normally we could just use the 

random.choice() function and pass it a tuple (UP, DOWN, LEFT, RIGHT) to have 

Python simply randomly choose a direction value for us. But the Sliding Puzzle game has a small 

restriction that prevents us from choosing a purely random number. 

If you had a slide puzzle and slid a tile to left, and then slid a tile to the right, you would end up 

with the  175.lto pn.4o0
ET( )] TJ
ETd dou had a  



Chapter 4 – Slide Puzzle    97 

 

validMoves. Depending on if the blank space is at the edge of the board, lines 184 to 191 will 

remove other directional values from the lastMove list. 

Of the values that are left in lastMove, one of them is randomly selected with a call to 

random.choice() and returned.



98    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

215.     # draw a tile at board coordinates tilex and tiley, optionally a few 

216.     # pixels over (determined by adjx and adjy) 

217.     left, top = getLeftTopOfTile(tilex, tiley) 

218.     pygame.draw.rect(DISPLAYSURF, TILECOLOR, (left + adjx, top + adjy, 

TILESIZE, TILESIZE)) 

219.     textSurf = BASICFONT.render(str(number), True, TEXTCOLOR) 

220.     textRect = textSurf.get_rect() 

221.     textRect.center = left + int(TILESIZE / 2) + adjx, top + int(TILESIZE 

/ 2) + adjy 

222.     DISPLAYSURF.blit(textSurf, textRect) 

The drawTile() function will draw a single numbered tile on the board. The tilex and 

tiley 









102    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

 

You can see this for yourself by commenting out line 276 and running the program. 

278.     for i in range(0, TILESIZE, animationSpeed): 

279.         # animate the tile sliding over 

280.         checkForQuit() 

281.         DISPLAYSURF.blit(baseSurf, (0, 0)) 









106    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 



Chapter 4 – Slide Puzzle    107 

 

Nobody Cares About a Few Million Nanoseconds 
Similarly, there are times when you can rearrange your code in some way to make it slightly 

faster by a few nanoseconds. These tricks also usually make the code harder to read. When you 

consider that several billion nanoseconds have passed in the time it takes you to read this 

sentence, saving a few nanoseconds of execution time in your program won’t be noticed by the 

player. 

Summary 
This chapter hasn’t introduced any new Pygame programming concepts that the Memory Puzzle 

game didn’t use, aside from using the copy() method of Surface objects. Just knowing a few 

different concepts will let you create completely different games. 

For practice, you can download buggy versions of the Sliding Puzzle program from 

http://invpy.com/buggy/slidepuzzle.   



108    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

CHAPF1 1TERF1 1 5 ð S





110    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

 47.     pygame.display.set_caption('Simulate') 

 48.  

 49.     BASICFONT = pygame.font.Font('freesansbold.ttf', 16) 

 50. 

 51.     infoSurf = BASICFONT.render('Match the pattern by clicking on the 

button or using the Q, W, A, S keys.', 1, DARKGRAY) 

 52.     infoRect = infoSurf.get_rect() 

 53.     infoRect.topleft = (10, WINDOWHEIGHT - 25) 

 54.     # load the sound files 

 55.     BEEP1 = pygame.mixer.Sound('beep1.ogg') 

 56.     BEEP2 = pygame.mixer.Sound('beep2.ogg') 

 57.     BEEP3 = pygame.mixer.Sound('beep3.ogg') 

 58.     BEEP4 = pygame.mixer.Sound('beep4.ogg') 

 59.  

 60.     # Initialize some variables for a new game 

 61.     pattern = [] # stores the pattern of colors 

 62.     currentStep = 0 # the color the player must push next 

 63.     lastClickTime = 0 # timestamp of the player's last button push 

 64.     score = 0 

 65.     # when False, the pattern is playing. when True, waiting for the 

player to click a colored button: 

 66.     waitingForInput = False 

 67.  

 68.     while True: # main game loop 

 69.         clickedButton = None 



Chapter 5 – Simulate    111 

 

 90.                 elif event.key == K_a: 

 91.                     clickedButton = RED 

 92.                 elif event.key == K_s: 

 93.                     clickedButton = GREEN 

 94. 

 95. 

 96. 

 97.         if not waitingForInput: 

 98.             # play the pattern 

 99.             pygame.display.update() 

100.             pygame.time.wait(1000) 

101.             pattern.append(random.choice((YELLOW, BLUE, RED, GREEN))) 

102.             for button in pattern: 

103.                 flashButtonAnimation(button) 

104.                 pygame.time.wait(FLASHDELAY) 

105.             waitingForInput = True 

106.         else: 

107.             # wait for the player to enter buttons 

108.             



112    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

135. 

136. def terminate(): 

137.     pygame.quit() 

138.     sys.exit() 

139.  

140.  

141. def checkForQuit(): 

142.     for event in pygame.event.get(QUIT): # get all the QUIT events 

143.         terminate() # terminate if any QUIT events are present 

144.     for event in pygame.event.get(KEYUP): # get all the KEYUP events 

145.         if event.key == K_ESCAPE: 

146.             terminate() # terminate if the KEYUP event was for the Esc key 

147.         pygame.event.post(event) # put the other KEYUP event objects back 

148. 

149. 

150. def flashButtonAnimation(color, animationSpeed=50): 

151.     if color == YELLOW: 

152.         sound = BEEP1 

153.         flashColor = BRIGHTYELLOW 

154.         rectangle = YELLOWRECT 

155.     elif color == BLUE: 

156.         sound = BEEP2 

157.         flashColor = BRIGHTBLUE 

156        







Chapter 5 – Simulate    115 

 

 17.  



116    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

 43.  

 44.     pygame.init() 

 45.     FPSCLOCK = pygame.time.Clock() 

 46.     DISPLAYSURF = pygame.display.set_mode((WINDOWWIDTH, WINDOWHEIGHT)) 

 47.     pygame.display.set_caption('Simulate') 

 48.  

 49.     BASICFONT = pygame.font.Font('freesansbold.ttf', 16) 

 50. 

 51.     infoSurf = BASICFONT.render('Match the pattern by clicking on the 

button or using the Q, W, A, S keys.', 1, DARKGRAY) 

 52.     infoRect = infoSurf.get_rect() 

 53.     infoRect.topleft = (10, WINDOWHEIGHT - 25) 

 54.     # load the sound files 

 55.     BEEP1 = pygame.mixer.Sound('beep1.ogg') 



Chapter 5 – Simulate    117 

 

have to first click the red button twice, then the yellow button, then the red button, and so on until 

the final green button. As the player finishes each round, a new random color is added to the end 

of the list. 

The currentStep variable will keep track of which color in the pattern list the player has to 

click next. If currentStep was 0 and pattern was [GREEN, RED, RED, YELLOW], 

then the player would have to click the green button. If they clicked on any other button, the code 

will cause a game over. 

There is a TIMEOUT constant that makes the player click on next button in the pattern within a 

number of seconds, otherwise the code causes a game over. In order to check if enough time has 

passed since the last button click, the lastClickTime variable needs to keep track of the last 

time the player clicked on a button. (Python has a module named time and a time.time() 

function to return the current time. This will be explained later.) 

It may be hard to believe, but the score variable keeps track of the score. Inconceivable! 

There are also two modes that our program will be in. Either the program is playing the pattern of 

buttons for the player (in which case, waitingForInput is set to False), or the program has 

finished playing the pattern and is waiting for the user to click the buttons in the correct order (in 

which case, waitingForInput is set to True). 

Drawing the Board and Handling Input 

 68.     while True: # main game loop 

 69.         clickedButton = None # button that was clicked (set to YELLOW, 





Chapter 5 – Simulate    119 

 

We can do this by setting the clickedButton variable to the value in the constant variable 

YELLOW. We can do the same for the three other keys. This way, the user can play Simulate with 

either the mouse or keyboard. 

The Two States of the Game Loop 

 97.         if not waitingForInput: 

 98.             # play the pattern 

 99.             pygame.display.update() 

100.             pygame.time.wait(1000) 

101.             pattern.append(random.choice((YELLOW, BLUE, RED, GREEN))) 

102.             for button in pattern: 

103.                 flashButtonAnimation(button) 

104.                 pygame.time.wait(FLASHDELAY) 

105.             waitingForInput = True 

There are two different ―modes‖ or ―states‖ that the program can be in. When 

waitingForInput is False, the program will be displaying the animation for the pattern. 

When waitingForInput is True, the program will be waiting for the user to select buttons. 

Lines 97 to 105 will cover the case where the program displays the pattern animation. Since this 

is done at the start of the game or when the player finishes a pattern, line 101 will add a random 

color to the pattern list to make the pattern one step longer. Then lines 102 to 104 loops through 

each of the values in the pattern list and calls flashButtonAnimation() which makes that 

button light up. After it is done lighting up all the buttons in the pattern list, the program sets the 

waitingForInput variable to True. 

Figuring Out if the Player Pressed the Right Buttons 

106.         else: 

107.             # wait for the player to enter buttons 

 

 

 

 

 

 

 

 

 

 

 

 



120    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

For example, if pattern was set to [YELLOW, RED, RED] and the currentStep variable 

was set to 0 (like it would be when the player first starts the game), then the correct button for the 

player to click would be pattern[0] (the yellow button). 

If the player has clicked on the correct button, we want to flash the button the player clicked by 

calling flashButtonAnimation() then, increase the currentStep to the next step, and 

then update the lastClickTime variable to the current time. (The time.time() function 

returns a float value of the number of seconds since January 1
st
, 1970, so we can use it to keep 

track of time.) 

114.                 if currentStep == len(pattern): 





122    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 



Chapter 5 – Simulate    123 

 

145.         if event.key == K_ESCAPE: 

146.             terminate() # terminate if the KEYUP event was for the Esc key 

147.         pygame.event.post(event) # put the other KEYUP event objects back 

The terminate() and checkForQuit() functions were used and explained in the Sliding 

Puzzle chapter, so we will skip describing them again. 

Reusing The Constant Variables 

150. def flashButtonAnimation(color, animationSpeed=50): 

151.     if color == YELLOW: 

152.         sound = BEEP1 

153.         flashColor = BRIGHTYELLOW 

154.         rectangle = YELLOWRECT 

155.     elif color == BLUE: 

156.         sound = BEEP2 

157.         flashColor = BRIGHTBLUE 

158.         rectangle = BLUERECT 

159.     elif color == RED: 

160.         sound = BEEP3 

161.         flashColor = BRIGHTRED 

162.         rectangle = REDRECT 

163.     elif color == GREEN: 

164.         sound = BEEP4 

165.         flashColor = BRIGHTGREEN 

166.         rectangle = GREENRECT 

Depending on which Color value is passed as an argument for the color parameter, the sound, 

color of the bright flash, and rectangular area of the flash will be different. Line 151 to 166 sets 

three local variables differently depending on the value in the color parameter: sound, 

flashColor, and rectangle. 

Animating the Button Flash 

168.     origSurf = DISPLAYSURF.copy() 

169.     flashSurf = pygame.Surface((BUTTONSIZE, BUTTONSIZE)) 

170.     flashSurf = flashSurf.convert_alpha() 

171.     r, g, b = flashColor 

172.     sound.play() 

The process of animating the button flash is simple: On each frame of the animation, the normal 



124    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

and the bright color version completely paints over the normal button color. This will make it 

look like the button is slowly brightening up. 

The brightening up is the first half of the animation. The second half is the button dimming. This 

is done with the same code, except that instead of the alpha value increasing for each frame, it 

will be decreasin



Chapter 5 – Simulate    125 

 

        pygame.display.update() 

        FPSCLOCK.tick(FPS) 

    for alpha in range(255, 0, -animationSpeed): # dimming 

        checkForQuit() 

        DISPLAYSURF.blit(origSurf, (0, 0)) 

        flashSurf.fill((r, g, b, alpha)) 

        DISPLAYSURF.blit(flashSurf, rectangle.topleft) 

        pygame.display.update() 

        FPSCLOCK.tick(FPS) 

But notice that the code inside the for loops handles drawing the frame and are identical to each 

other. If we wrote the code like the above, then the first for loop would handle the brightening 

part of the animation (where the alpha value goes from 0 to 255) and the second for loop would 

handle the dimming part of the animation (where the alpha values goes from 255 to 



126    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

178.             DISPLAYSURF.blit(flashSurf, rectangle.topleft) 

179.             pygame.display.update() 

180.             FPSCLOCK.tick(FPS) 

181.     DISPLAYSURF.blit(origSurf, (0, 0)) 

We check for any QUIT events (in case the user tried to close the program during the animation), 

then blit the origSurf Surface to the display Surface. Then we paint the flashSurf Surface 

by calling fill() (supplying the r, g, b values of the color we got on line 171 and the alpha 

value that the for loop sets in the alpha variable). Then the flashSurf Surface is blitted to 

the display Surface.  

Then, to make the display Surface appear on the screen, pygame.display.update() is 

called on line 179. To make sure the animation doesn’t play as fast as the computer can draw it, 

we add short pauses with a call to the tick() method. (If you want to see the flashing animation 

play very slowly, put a low number like 1 or 2 as the argument to tick() instead of FPS.) 

Drawing the Buttons 

184. def drawButtons(): 

185.     pygame.draw.rect(DISPLAYSURF, YELLOW, YELLOWRECT) 

186.     pygame.draw.rect(DISPLAYSURF, BLUE,   BLUERECT) 

187.     pygame.draw.rect(DISPLAYSURF, RED,    REDRECT) 

188.     pygame.draw.rect(DISPLAYSURF, GREEN,  GREENRECT) 

Since each of the buttons is just a rectangle of a certain color in a certain place, we just make four 

calls to pygame.draw.rect() to draw the buttons on the display Surface. The Color object 

and the Rect object we use to position them 







Chapter 5 – Simulate    129 

 

The for loop on line 226 adjusts the alpha value for the color used for each frame of animation 

(increasing at first, and then decreasing). 

Converting from Pixel Coordinates to Buttons 

238. def getButtonClicked(x, y): 

239.     if YELLOWRECT.collidepoint( (x, y) ): 

240.         return YELLOW 

241.     elif BLUERECT.collidepoint( (x, y) ): 

242.         return BLUE 

243.     elif REDRECT.collidepoint( (x, y) ): 

244.         return RED 

245.     elif GREENRECT.collidepoint( (x, y) ): 

246.         return GREEN 

247.     return None 

248.  

249.  

250. if __name__ == '__main__': 

251.     main() 

The getButtonClicked() 







132    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

 12. CELLSIZE = 20 

 13. assert WINDOWWIDTH % CELLSIZE == 0, "Window width must be a multiple of 

cell size." 

 14. assert WINDOWHEIGHT % CELLSIZE == 0, "Window height must be a multiple of 

cell size." 

 15. CELLWIDTH = int(WINDOWWIDTH / CELLSIZE) 

 16. CELLHEIGHT = int(WINDOWHEIGHT / CELLSIZE) 

 17.  

 18. #             R    G    B 

 19. WHITE     = (255, 255, 255) 

 20. BLACK     = (  0,   0,   0) 

 21. RED       = (255,   0,   0) 

 



Chapter 6 – Wormy    133 

 

 56.     direction = RIGHT 

 57.  

 58.     # Start the apple in a random place. 

 59.     apple = getRandomLocation() 

 60.  

 61.     while True: # main game loop 

 62.         for event in pygame.event.get(): # event handling loop 

 63.             if event.type == QUIT: 

 64.                 terminate() 

 65.             elif event.type == KEYDOWN: 

 66.                 if (event.key == K_LEFT or event.key == K_a) and direction 

!= RIGHT: 

 67.                     direction = LEFT 

 68.                 elif (event.key == K_RIGHT or event.key == K_d) and 

direction != LEFT: 

 69.                     direction = RIGHT 

 70.                 elif (event.key == K_UP or event.key == K_w) and direction 

!= DOWN: 

 71.                     direction = UP 

 72.                 elif (event.key == K_DOWN or event.key == K_s) and 

direction != UP: 

 73.                     direction = DOWN 

 74.                 elif event.key == K_ESCAPE: 

 75.                     terminate() 

 76.  

 77.         # check if the worm has hit itself or the edge 

 78.         if wormCoords[HEAD]['x'] == -1 or wormCoords[HEAD]['x'] == 

CELLWIDTH or wormCoords[HEAD]['y'] == -1 or wormCoords[HEAD]['y'] == 

CELLHEIGHT: 

 79.             return # game over 

 80.         for wormBody in wormCoords[1:]: 

 81.             if wormBody['x'] == wormCoords[HEAD]['x'] and wormBody['y'] == 

wormCoords[HEAD]['y']: 

 82.                 return # game over 

 83.  

 84.         # check if worm has eaten an apply 

 85.         if wormCoords[HEAD]['x'] == apple['x'] and wormCoords[HEAD]['y'] 

== apple['y']: 

 86.             # don't remove worm's tail segment 

 87.             apple = getRandomLocation() # set a new apple somewhere 

 88.         else: 

 89.             del wormCoords[-1] # remove worm's tail segment 

 90.  

 91.         





Chapter 6 – Wormy    135 

 

134.     degrees2 = 0 

135.     while True: 

136.         DISPLAYSURF.fill(BGCOLOR) 

137.         rotatedSurf1 = pygame.transform.rotate(titleSurf1, degrees1) 

138.         rotatedRect1 = rotatedSurf1.get_rect() 

139.         rotatedRect1.center = (WINDOWWIDTH / 2, WINDOWHEIGHT / 2) 

140.         DISPLAYSURF.blit(rotatedSurf1, rotatedRect1) 

141.  

142.         rotatedSurf2 = pygame.transform.rotate(titleSurf2, degrees2) 

143.         rotatedRect2 = rotatedSurf2.get_rect() 

144.         



136    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

179.     pygame.display.update() 

180.     pygame.time.wait(500) 

181.     checkForKeyPress() # clear out any key presses in the event queue 

182.  

183.     while True: 

184.         if checkForKeyPress(): 

185.             pygame.event.get() # clear event queue 

186.             return 

187.  

188. def drawScore(score): 

189.     scoreSurf = BASICFONT.render('Score: %s' % (score), True, WHITE) 

190.     



Chapter 6 – Wormy    137 

 

The Grid 

 

If you play the game a little, you’ll notice that the apple and the segments of the worm’s body 

always fit along a grid of lines. We will call each of the squares in this grid a cell (it’s not







140    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

 





142    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

Moving the Worm 

 91.         # move the worm by adding a segment in the direction it is moving 

 92.         if direction == UP: 

 93.             newHead = {'x': wormCoords[HEAD]['x'], 'y': 

wormCoords[HEAD]['y'] - 1} 

 94.         elif direction == DOWN: 

 95.             newHead = {'x': wormCoords[HEAD]['x'], 'y': 

wormCoords[HEAD]['y'] + 1} 

 96.         elif direction == LEFT: 

 97.             newHead = {'x': wormCoords[HEAD]['x'] - 1, 'y': 

wormCoords[HEAD]['y']} 

 98.         elif direction == RIGHT: 

 99.             newHead = {'x': wormCoords[HEAD]['x'] + 1, 'y': 

wormCoords[HEAD]['y']} 

100.         wormCoords.insert(0, newHead) 

To move the worm, we add a new body segment to the beginning of the wormCoords list. 

Because the body segment is being added to the beginning of the list, it will become the new 

head. The coordinates of the new head will be right next to the old head’s coordinates. Whether 1 

is added or subtracted from either the X or Y coordinate depends on the direction the worm was 

going. 

This new head segment is added to wormCoords with the insert() list method on line 100. 

The insert() List Method 
Unlike the append() list method that can only add items to the end of a list, the insert() list 

method can add items anywhere inside the list. The first parameter for insert() is the index 

where the item should go (all the items originally at this index and after have their indexes 

increase by one). If the argument passed for the first parameter is larger than the length of the list, 

the item is simply added to the end of the list (just like what append() does). The second 

parameter for insert() is the item value to be added. Type the following into the interactive 

shell to see how insert() works: 

>>> spam = ['cat', 'dog', 'bat'] 

>>> spam.insert(0, 'frog') 

>>> spam 

['frog', 'cat', 'dog', 'bat'] 

>>> spam.insert(10, 42) 

>>> spam 

['frog', 'cat', 'dog', 'bat', 42] 

>>> spam.insert(2, 'horse') 

>>> spam 

['frog', 'cat', 'horse', 'dog', 'bat', 42] 



Chapter 6 – Wormy    143 

 

>>> 

Drawing the Screen 

101.         DISPLAYSURF.fill(BGCOLOR) 

102.         drawGrid() 

103.         drawWorm(wormCoords) 

104.         drawApple(apple) 

105.         drawScore(len(wormCoords) - 3) 

106.         pygame.display.update() 

107.         FPSCLOCK.tick(FPS) 

The code for drawing the screen in the runGame() function is fairly simple. Line 101 fills in 

the entire display Surface with the background color. Lines 102 to 105 draw the grid, worm, 

apple, and score to the display Surface. Then the call to pygame.display.update() draws 

the display Surface to the actual computer screen. 

Drawing “Press a key” Text to the Screen 

109. def drawPressKeyMsg(): 

110.     pressKeySurf = BASICFONT.render('Press a key to play.', True, 

DARKGRAY) 

111.     pressKeyRect = pressKeySurf.get_rect() 

112.     pressKeyRect.topleft = (WINDOWWIDTH - 200, WINDOWHEIGHT - 30) 

113.     DISPLAYSURF.blit(pressKeySurf, pressKeyRect) 

While the start screen animation is playing or the game over screen is being shown, there will be 

some small text in the bottom right corner that says ―Press a key to play.‖ Rather than have the 

code typed out in both the showStartScreen() and the showGameOverScreen(), we 

put it in a this separate function and simply call the function from showStartScreen() and 

showGameOverScreen(). 

The checkForKeyPress() Function 

116. def checkForKeyPress(): 

117.     if len(pygame.event.get(QUIT)) > 0: 

118.         terminate() 

119.  

120.     keyUpEvents = pygame.event.get(KEYUP) 

121.     if len(keyUpEvents) == 0: 

122.         return None 

123.     if keyUpEvents[0].key == K_ESCAPE: 

124.         terminate() 

125.     return keyUpEvents[0].key 



144    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

This function first checks if there are any QUIT events in the event queue. The call to 

pygame.event.get() on line 117 returns a list of all the QUIT events in the event queue 

(because we pass QUIT as an argument). If there are not QUIT events in the event queue, then 

the list that pygame.event.get() returns will be the empty list: [] 

The len() call on line 117 will return 0 if pygame.event.get() returned an empty list. If 

there are more than zero items in the list returned by pygame.event.get() (and remember, 

any items in this list will only be QUIT events because we passed QUIT as the argument to 

pygame.event.get()), then the terminate() function gets called on line 118 and the 

program terminates. 

After that, the call to pygame.event.get() gets a list of any KEYUP events in the event 

queue. If the key event is for the Esc key, then the program terminates in that case as well. 

Otherwise, the first key event object in the list that was returned by pygame.event.get() is 

returned from this checkForKeyPress() function. 

The Start Screen 

128. def showStartScreen(): 

129.     titleFont = pygame.font.Font('freesansbold.ttf', 100) 

130.     titleSurf1 = titleFont.render('Wormy!', True, WHITE, DARKGREEN) 

131.     titleSurf2 = titleFont.render('Wormy!', True, GREEN) 

132.  

133.     degrees1 = 0 

134.     degrees2 = 0 

135.     while True: 

136.         DISPLAYSURF.fill(BGCOLOR) 

When the Wormy game program first begins running, the player doesn’t automatically begin 

playing the game. Instead, a start screen appears which tells the player what program they are 

running. A start screen also gives the player a chance to prepare for the game to begin (otherwise 

the player might not be ready and crash on their first game). 

The Wormy start screen requires two Surface objects with the ―Wormy!‖ text drawn on them. 

These are what the render() method calls create on lines 130 and 131. The text will be large: 

the Font() constructor function call on line 129 creates a Font object t

31





146    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 



Chapter 6 – Wormy    147 

 

program will crash with the error message, pygame.error: Width or height is too 

large. 

154.         degrees1 += 3 # rotate by 3 degrees each frame 

155.         degrees2 += 7 # rotate by 7 degrees each frame 

The amount that we rotate the two ―Wormy!‖ text Surface objects is stored in degrees1 and 

degrees2. On each iteration through the animation loop, we increase the number stored in 

degrees1 by 3 and degrees2 by 7. This means on the next iteration of the animation loop 

the white text ―Wormy!‖ Surface object will be rotated by another 3 degrees and the green text 

―Wormy!‖ Surface object will be rotated by another 7 degrees. This is why the one of the Surface 

objects rotates slower than the other. 

158. def terminate(): 

159.     pygame.quit() 

160.     sys.exit() 

The terminate() function calls pygame.quit() and sys.exit() so that the game 

correctly shuts down. It is identical to the terminate() functions in the previous game 

programs. 

Deciding Where the Apple Appears 

163. def getRandomLocation(): 

164.     return {'x': random.randint(0, CELLWIDTH - 1), 'y': random.randint(0, 

CELLHEIGHT - 1)} 

The getRandomLocation() function is called whenever new coordinates for the apple are 

needed. This function returns a dictionary with keys 'x' and 'y', with the values set to random 

XY coordinates. 

Game Over Screens 

167. def showGameOverScreen(): 

168.     gameOverFont = pygame.font.Font('freesansbold.ttf', 150) 

169.     gameSurf = gameOverFont.render('Game', True, WHITE) 

170.     overSurf = gameOverFont.render('Over', True, WHITE) 

171.     gameRect = gameSurf.get_rect() 

172.     overRect = overSurf.get_rect() 

173.     gameRect.midtop = (WINDOWWIDTH / 2, 10) 

174.     overRect.midtop = (WINDOWWIDTH / 2, gameRect.height + 10 + 25) 

175.  

176.     DISPLAYSURF.blit(gameSurf, gameRect) 





Chapter 6 – Wormy    149 

 

195. def drawWorm(wormCoords): 

196.     for coord in wormCoords: 

197.         x = coord['x'] * CELLSIZE 

198.         y = coord['y'] * CELLSIZE 

199.         wormSegmentRect = pygame.Rect(x, y, CELLSIZE, CELLSIZE) 

200.         pygame.draw.rect(DISPLAYSURF, DARKGREEN, wormSegmentRect) 

201.         wormInnerSegmentRect = pygame.Rect(x + 4, y + 4, CELLSIZE - 8, 

CELLSIZE - 8) 

202.         pygame.draw.rect(DISPLAYSURF



150    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

214.         pygame.draw.line(DISPLAYSURF, DARKGRAY, (x, 0), (x, WINDOWHEIGHT)) 

215.     for y in range(0, WINDOWHEIGHT, CELLSIZE): # draw horizontal lines 

216.         pygame.draw.line(DISPLAYSURF, DARKGRAY, (0, y), (WINDOWWIDTH, y)) 

Just to make it easier to visualize the grid of cells, we call pygame.draw.line() to draw out 

each of the vertical and horizontal lines of the grid. 

Normally, to draw the 32 vertical lines needed, we would need 32 calls to 

pygame.draw.line() with the following coordinates: 

pygame.draw.line(DISPLAYSURF, DARKGRAY, (0, 0), (0, WINDOWHEIGHT)) 

pygame.draw.line(DISPLAYSURF, DARKGRAY, (20, 0), (20, WINDOWHEIGHT)) 

pygame.draw.line(DISPLAYSURF, DARKGRAY, (40, 0), (40, WINDOWHEIGHT)) 

pygame.draw.line(DISPLAYSURF, DARKGRAY, (60, 0), (60, WINDOWHEIGHT)) 

...skipped for brevity... 

pygame.draw.line(DISPLAYSURF, DARKGRAY, (560, 0), (560, WINDOWHEIGHT)) 

pygame.draw.line(DISPLAYSURF, DARKGRAY, (580, 0), (580, WINDOWHEIGHT)) 

pygame.draw.line(DISPLAYSURF, DARKGRAY, (600, 0), (600, WINDOWHEIGHT)) 

pygame.draw.line(DISPLAYSURF, DARKGRAY, (620, 0), (620, WINDOWHEIGHT)) 

Instead of typing out all these lines of code, we can just have one line of code inside a for loop. 

Notice that the pattern for the vertical lines is that the X coordinate of the start and end point 

starts at 0 and goes up to 620, increasing by 20 each time. The Y coordinate is always 0 for the 

start point and WINDOWHEIGHT for the end point parameter. That means the for loop should 

iterate over range(0, 640, 20). This is why the for loop on line 213 iterates over 

range(0, WINDOWWIDTH, CELLSIZE). 

For the horizontal lines, the coordinates would have to be: 

pygame.draw.line(DISPLAYSURF, DARKGRAY, (0, 0), (WINDOWWIDTH, 0)) 

pygame.draw.line(DISPLAYSURF, DARKGRAY, (0, 20), (WINDOWWIDTH, 20)) 

pygame.draw.line(DISPLAYSURF, DARKGRAY, (0, 40), (WINDOWWIDTH, 40)) 

pygame.draw.line(DISPLAYSURF, DARKGRAY, (0, 60), (WINDOWWIDTH, 60)) 

...skipped for brevity... 

pygame.draw.line(DISPLAYSURF, DARKGRAY, (0, 400), (WINDOWWIDTH, 400)) 

pygame.draw.line(DISPLAYSURF, DARKGRAY, (0, 420), (WINDOWWIDTH, 420)) 

pygame.draw.line(DISPLAYSURF, DARKGRAY, (0, 440), (WINDOWWIDTH, 440)) 

pygame.draw.line(DISPLAYSURF, DARKGRAY, (0, 460), (WINDOWWIDTH, 460)) 

The Y coordinate ranges from 0 to 460, increasing by 20 each time. The X coordinate is always 

0 for the start point and WINDOWWIDTH for the end point parameter. We can also use a for loop 







Chapter 7 - Tetromino    153 

 

CHAPTER 7 -





Chapter 7 - Tetromino    155 

 

 24. WHITE       = (255, 255, 255) 

 25. GRAY        = (185, 185, 185) 

 26. BLACK       = (  0,   0,   0) 

 27. RED         = (155,   0,   0) 

 28. LIGHTRED    = (175,  20,  20) 

 29. GREEN       = (  0, 155,   0) 

 30. LIGHTGREEN  = ( 20, 175,  20) 

 31. BLUE        = (  0,   0, 155) 

 32. LIGHTBLUE   = ( 20,  20, 175) 

 33. YELLOW      = (155, 155,   0) 

 34. LIGHTYELLOW = (175, 175,  20) 

 35.  

 36. BORDERCOLOR = BLUE 

 37. BGCOLOR = BLACK 

 38. TEXTCOLOR = WHITE 

 39. TEXTSHADOWCOLOR = GRAY 

 40. COLORS      = (     BLUE,      GREEN,      RED,      YELLOW) 

 41. LIGHTCOLORS = (LIGHTBLUE, LIGHTGREEN, LIGHTRED, LIGHTYELLOW) 

 42. assert len(COLORS) == len(LIGHTCOLORS) # each color must have ligc* n
0 g
65.184 554.14 0.48 12.24 re
f*
66.144 554.14 0.48 12.24 re
f*
510.46 554.14 0.48001 12.24 re
f*
5 1 99.0



156    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

 70.                      '..O..', 

 71.                      '..O..', 

 72.                      '..O..', 

 73.                      '.....'], 

 74.                     ['.....', 

 75.                      '.....', 

 76.                      'OOOO.', 

 77.                      '.....', 

 78.                      '.....']] 

 79.  

 80. O_SHAPE_TEMPLATE = [['.....', 

 81.                      '.....', 

 82.                      '.OO..', 

 83.                      '.OO..', 

 84.                      '.....']] 

 85.  

 86. J_SHAPE_TEMPLATE = [['.....', 

 87.                      '.O...', 

 88.                      '.OOO.', 

 89.                      '.....', 

 90.                      '.....'], 

 91.                     ['.....', 

 92.                      '..OO.', 

 93.                      '..O..', 

 94.                      '..O..', 

 95.                      '.....'], 

 96.                     ['.....', 

 97.                      '.....', 

 98.                      '.OOO.', 

 99.                      '...O.', 

100.                      '.....'], 

101.                     ['.....', 

102.                      '..O..', 

103.                      '..O..', 

104.                      '.OO..', 

105.                      '.....']] 

106.  

107. L_SHAPE_TEMPLATE = [['.....', 

108.                      '...O.', 

109.                      '.OOO.', 

110.                      '.....', 

111.                      '.....'], 

112.                     ['.....', 

113.                      '..O..', 

114.                      '..O..', 

115.                      '..OO.', 



Chapter 7 - Tetromino    157 

 

116.                      '.....'], 

117.                     ['.....', 

118.                      '.....', 

119.                      '.OOO.', 

120.                      '.O...', 

121.                      '.....'], 

122.                     ['.....', 

123.                      '.OO..', 

124.                      '..O..', 

125.                      '..O..', 

126.                      '.....']] 

127.  

128. T_SHAPE_TEMPLATE = [['.....', 

129.                      '..O..', 

130.                      '.OOO.', 

131.                      '.....', 

132.                      '.....'], 

133.                     ['.....', 

134.                      '..O..', 

135.                      '..OO.', 

136.                      '..O..', 

137.                      '.....'], 

138.                     ['.....', 

139.                      '.....', 

140.                      '.OOO.', 

141.                      '..O..', 

142.                      '.....'], 

143.                     ['.....', 

144.                      '..O..', 

145.                      '.OO..', 

136. 

                     

'..O..',

 





Chapter 7 - Tetromino    159 

 

208.                     # Pausing the game 

209.                     DISPLAYSURF.fill(BGCOLOR) 

210.                     pygame.mixer.music.stop() 

211.                     showTextScreen('Paused') # pause until a key press 

212.                     pygame.mixer.music.play(-1, 0.0) 

213.                     lastFallTime = time.time() 

214.                     lastMoveDownTime = time.time() 

215.                     lastMoveSidewaysTime = time.time() 

216.                 elif (event.key == K_LEFT or event.key == K_a): 

217.                     movingLeft = False 

218.                 elif (event.key == K_RIGHT or event.key == K_d): 

219.                     movingRight = False 

220.                 elif (event.key == K_DOWN or event.key == K_s): 

221.                     movingDown = False 

222.  

223.             elif event.type == KEYDOWN: 

224.                 # moving the block sideways 

225.                 if (event.key == K_LEFT or event.key == K_a) and 

isValidPosition(board, fallingPiece, adjX=-1): 

226.                     fallingPiece['x'] -= 1 

227.                     movingLeft = True 

228.                     movingRight = False 

229.                     lastMoveSidewaysTime = time.time() 

230. 

231.                 elif (event.key == K_RIGHT or event.key == K_d) and 

isValidPosition(board, fallingPiece, adjX=1): 

232.                     fallingPiece['x'] += 1 

233.                     movingRight = True 

234.                     



160    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

248.                 elif (event.key == K_DOWN or event.key == K_s): 

249.                     movingDown = True 

250.                     if isValidPosition(board, fallingPiece, adjY=1): 

251.                         fallingPiece['y'] += 1 

252.                     lastMoveDownTime = time.time() 

253.  

254.                 # move the current block all the way down 

255.                 elif event.key == K_SPACE: 

256.                     movingDown = False 

257.                     movingLeft = False 

258.                     movingRight = False 

259.                     for i in range(1, BOARDHEIGHT): 

260.                         if not isValidPosition(board, fallingPiece, 

adjY=i): 

261.                             break 

262.                     fallingPiece['y'] += i - 1 

263.  

264.         



Chapter 7 - Tetromino    161 

 

289.  

290.         # drawing everything on the screen 

291.         DISPLAYSURF.fill(BGCOLOR) 

292.         drawBoard(board) 

293.         drawStatus(score, level) 

294.         drawNextPiece(nextPiece) 

295.         if fallingPiece != None: 

296.             drawPiece(fallingPiece) 



162    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

334.     titleRect.center = (int(WINDOWWIDTH / 2) - 





164    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 



Chapter 7 - Tetromino    165 

 

461.     pygame.draw.rect(DISPLAYSURF, BGCOLOR, (XMARGIN, TOPMARGIN, BOXSIZE * 

BOARDWIDTH, BOXSIZE * BOARDHEIGHT)) 





Chapter 7 - Tetromino    167 

 

 21. TOPMARGIN = WINDOWHEIGHT - (BOARDHEIGHT * BOXSIZE) - 5 

The program needs to calculate how many pixels are to the left and right side of the board to use 

later in the program. WINDOWWIDTH is the total number of pixels wide the entire window is. The 

board is BOARDWIDTH boxes wide and each box is BOXSIZE pixels wide. If we subtract 

BOXSIZE pixels from this for each of the boxes wide in the board (which is BOARDWIDTH * 

BOXSIZE), we’ll have the size of the margin to the left and right of the board. If we divide this 

by 2





Chapter 7 - Tetromino    169 

 

 71.                      '..O..', 





Chapter 7 - Tetromino    171 

 

 

Splitting a “Line of Code” Across Multiple Lines 
You can see that this list is spread across many lines in the file editor. This is perfectly valid 

Python, because the Python interpreter realizes that until it sees the ] closing square bracket, the 

list isn’t finished. The indentation doesn’t matter because Python knows you won’t have different 

indentation for a new block in the middle of a list. This code below works just fine: 

spam = ['hello', 3.14, 'world', 42, 10, 'fuzz'] 

eggs = ['hello', 3.14, 

   'world' 

         , 42, 

       10, 'fuzz'] 

Though, of course, the code for the eggs list would be much more readable if we lined up all the 

items in the list or put on a single line like spam. 

Normally, splitting a line of code across multiple lines in the file editor would require putting a \ 

character at the end of the line. The \ tells Python, ―This code continues onto the next line.‖ (This 

slash was first used in the Sliding Puzzle game in the isValidMove() function.) 

We will make ―template‖ data structures of the shapes by creating a list of these list of strings, 

and store them in variables such as S_SHAPE_TEMPLATE. This way, 

len(S_SHAPE_TEMPLATE) will represent how many possible rotations there are for the S 

shape, and S_SHAPE_TEMPLATE[0] will represent the S shape’s first possible rotation. Lines 

47 to 147 will create ―template‖ data structures for each of the shapes. 

Imagine that each possible piece in a tiny 5 x 5 board of empty space, with some of the spaces on 

the board filled in with boxes. The following expressions that use S_SHAPE_TEMPLATE[0] 

are True: 

S_SHAPE_TEMPLATE[0][2][2] == 'O' 

S_SHAPE_TEMPLATE[0][2][3] == 'O' 

S_SHAPE_TEMPLATE[0][3][1] == 'O' 

S_SHAPE_TEMPLATE[0][3][2] == 'O' 

If we represented this shape on paper, it would look something like this: 



172    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

 

This is how we can represent things like Tetromino pieces as Python values such as strings and 

lists. The TEMPLATEWIDTH and TEMPLATEHEIGHT constants simply set how large each row 

and column for each shape’s rotation should be. (The templates will always be 5x5.) 

149. SHAPES = {'S': S_SHAPE_TEMPLATE, 

150.           'Z': Z_SHAPE_TEMPLATE, 

151.           'J': J_SHAPE_TEMPLATE, 

152.           'L': L_SHAPE_TEMPLATE, 

153.           'I': I_SHAPE_TEMPLATE, 

154.           'O': O_SHAPE_TEMPLATE, 

155.           'T': T_SHAPE_TEMPLATE} 

The SHAPES variable will be a dictionary that stores all of the different templates. Because each 

template has all the possible rotations of a single shape, this means that the SHAPES variable 

contains all possible rotations of every possible shape. This will be the data structure that contains 

all of the shape data in our game. 

The main() Function 

158. def main(): 

159.     global FPSCLOCK, DISPLAYSURF, BASICFONT, BIGFONT 

160.     pygame.init() 

161.     FPSCLOCK = pygame.time.Clock() 

162.     DISPLAYSURF = pygame.display.set_mode((WINDOWWIDTH, WINDOWHEIGHT)) 

163.     BASICFONT = pygame.font.Font('freesansbold.ttf', 18) 

164.     BIGFONT = pygame.font.Font('freesansbold.ttf', 100) 

165.     pygame.display.set_caption('Tetromino') 

166.  

167.     showTextScreen('Tetromino') 















Chapter 7 - Tetromino    179 

 

done because this code will move the piece to the absolute bottom and begin falling the next 

piece, and we don’t want to surprise the player by having those pieces immediately start moving 

just because they were holding down an arrow key when they hit the space key. 

To find the farthest that the piece can fall, we should first call isValidPosition() and pass 

the integer 1 for the adjY parameter. If isValidPosition() returns False, we know that 

the piece cannot fall any further and is already at the bottom. If isValidPosition() returns 

True, then we know that it can fall 1 space down. 

In that case, we should call isValidPosition() with adjY set to 2. If it returns True 

again, we will call isValidPosition() with adjY set to 



180    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

If the user held down on the key for longer than 0.15 seconds (the value stored in 

MOVESIDEWAYSFREQ is the float 0.15) then the expression time.time() - 

lastMoveSidewaysTime > MOVESIDEWAYSFREQ would evaluate to True. Line 265’s 

condition is True if the user has both held down the arrow key and 0.15 seconds has passed, and 

in that case we should move the falling piece to the left or right even though the user hasn’t 

pressed the arrow key again. 

This is very useful because it would become tiresome for the player to repeatedly hit the arrow 

keys to get the falling piece to move over multiple spaces on the board. Instead, they can just hold 

down an arrow key and the piece will keep moving over until they let up on the key. When that 

happens, the code on lines 216 to 221 will set the moving variable to False and the condition on 

line 265 will be False. That is what stops the falling piece from sliding over more. 

To demonstrate why the 





182    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

Lines 272 to 274 do almost the same thing as lines 265 to 270 do except for moving the falling 

piece down. This has a separate move variable (movingDown) and ―last time‖ variable 

(lastMoveDownTime) as well as a different ―move frequency‖ variable (MOVEDOWNFREQ).  

Letting the Piece “Naturally” Fall 

276.         # let the piece fall if it is time to fall 

277.         if time.time() - lastFallTime > fallFreq: 

278.             # see if the piece has landed 

279.             if not isValidPosition(board, fallingPiece, adjY=1): 

280.                 # falling piece has landed, set it on the board 

281.                 addToBoard(board, fallingPiece) 

282.                 score += removeCompleteLines(board) 

283.                 level, fallFreq = calculateLevelAndFallFreq(score) 

284.                 fallingPiece = None 

285.             else: 

286.                 # piece did not land, just move the block down 

287.                 fallingPiece['y'] += 1 

288.                 lastFallTime = time.time() 

The rate that the piece is naturally moving down (that is, falling) is tracked by the 

lastFallTime variable. If enough time has elapsed since the falling piece last fell down one 

space, lines 279 to 288 will handle dropping the piece by one space. 

If the condition on line 279 is True, then the piece has landed. The call to addToBoard() will 

make the piece part of the board data structure (so that future pieces can land on it), and the 

removeCompleteLines() call will handle erasing any complete lines on the board and 

pulling the boxes down. The removeCompleteLines() 





184    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

3



Chapter 7 - Tetromino    185 

 

The showTextScreen() will be used for the start screen, the game over screen, and also for a 





Chapter 7 - Tetromino    187 

 

 

You can see that at level 14, the falling frequency will be less than 0. This won’t cause any bugs 

with our code, because line 277 just checks that the elapsed time since the falling piece last fell 

one space is greater than the calculated falling frequency. So if the falling frequency is negative, 

then the condition on line 277 will always be True and the piece will fall on every iteration of 

the game loop. From level 14 and beyond, the piece cannot fall any faster. 

If the FPS is set at 25, this means that at reaching level 14, the falling piece will fall 25 spaces a 

second. Considering that the board is only 20 spaces tall, that means the player will have less than 

a second to set each piece! 





Chapter 7 - Tetromino    189 

 

The value for the 'rotation' key is a random integer between 0 to one less than however 

many possible rotations there are for that shape. The number of rotations for a shape can be found 

from the expression len(SHAPES[shape]). 



190    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

387.     return board 



Chapter 7 - Tetromino    191 

 

  

The board with a falling piece in a valid 

position. 

The board with the falling piece in an invalid 

position. 



192    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

And now that we can figure out where the falling piece’s boxes are as board coordinates, we can 

see if they overlap with the landed boxes that are already on the board. The nested for loops on 

lines 396 and 397 go through each of the possible coordinates on the falling piece. 

We want to check if a box of the falling piece is either off of the board or overlapping a box on 

the board. (Although one exception is if the box is above the board, which is where it could be 

when the falling piece just begins falling.) Line 398 creates a variable named isAboveBoard 

that is set to True if the box on the falling piece at the coordinates pointed to be x and y is above 

the board. Otherwise it is set to False. 

The if statement on line 399 checks if the space on the piece is above the board or is blank. If 

either of those is True, then the code executes a continue statement and goes to the next 

iteration. (Note that the end of line 399 has [y][x] instead of [x][y]



Chapter 7 - Tetromino    193 

 

The isCompleteLine does a simple check at the row specified by the y parameter. A row on 

the board is considered to be ―complete‖ when every space is filled by a box. The for loop 







196    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

with the return values from convertToPixelCoords(). This call gets the pixel coordinates 

of the board coordinates specified by boxx and boxy. 

The code won’t fill the entire box’s space with color. To have a black outline in between the 

boxes of a piece, the left and top parameters in the pygame.draw.rect() call have + 1 

added to them and a - 1 is added to the width and height parameters. In order to draw the 



Chapter 7 - Tetromino    197 

 

The drawStatus() function is responsible for rendering the text for the ―Score:‖ and ―Level:‖ 

information that appears in the upper right of the corner of the screen. 

Drawing a Piece on the Board or Elsewhere on the Screen 

482. def drawPiece(piece, pixelx=None, pixely=None): 

483.     shapeToDraw = SHAPES[piece['shape']][piece['rotation']] 

484.     if pixelx == None and pixely == None: 

485.         # if pixelx & pixely hasn't been specified, use the location 

stored in the piece data structure 

486.         pixelx, pixely = convertToPixelCoords(piece['x'], piece['y']) 

487.  

488.     # draw each of the blocks that make up the piece 

489.     for x in range(TEMPLATEWIDTH): 

490.         for y in range(TEMPLATEHEIGHT): 

491.             if shapeToDraw[y][x] != BLANK: 

492.                 drawBox(None, None, piece['color'], pixelx + (x * 

BOXSIZE), pixely + (y * BOXSIZE)) 

The drawPiece() function will draw the boxes of a piece according to the piece data structure 

that is passed to it. This function will be used to draw the falling piece and the ―Next‖ piece. 

Since the piece data structure will contain all of the shape, position, rotation, and color 

information, nothing else besides the piece data structure needs to be passed to the function. 



198    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

503.  

504.  



Chapter 7 - Tetromino    199 

 

 

These variations can be downloaded from: 

 http://invpy.com/pentomino.py 

 http://invpy.com/tetrominoforidiots.py 

   



200    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

CHAPTER 8 ð SQUIRREL EAT 

SQUIRREL 

  

How to Play Squirrel Eat Squirrel 
Squirrel Eat Squirrel is loosely based on the game ―Katamari Damacy‖. 



Chapter 8 – Squirrel Eat Squirrel    201 

 

All the objects have the following keys in their dictionary value: 'x', 'y', and 'rect'. The 

'x' and 'y' key’s value give the coordinates of the top left of the object in game world 

coordinates. These are different from pixel coordinates (which is what the 'rect' key’s value 

tracks). The difference between game world and pixel coordinates will be explained when you 

learn about the concept of cameras. 

In addition, the player squirrel, enemy squirrel, and grass objects have other keys which are 

explained in a large comment at the start of the source code.  

Source Code to Squirrel Eat Squirrel 
This source code can be downloaded from http://invpy.com/squirrel.py. If you get any error 

messages, look at the line number that is mentioned in the error message and check your code for 

any typos. You can also copy and paste your code into the web form at 

http://invpy.com/diff/squirrel to see if the differences between your code and the code in the 

book. 

You will also need to download the following image files: 

 http://invpy.com/gameicon.png 

 http://invpy.com/squirrel.png 

 http://invpy.com/grass1.png 

 http://invpy.com/grass2.png 

 http://invpy.com/grass3.png 

 http://invpy.com/grass4.png 

  1. # Squirrel Eat Squirrel (a 2D Katamari Damacy clone) 

  







204    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

 90.     winMode = False           # if the player has won 

 91.      

 92.     # create the surfaces to hold game text 

 93.     gameOverSurf = BASICFONT.render('Game Over', True, WHITE) 

 94.     gameOverRect = gameOverSurf.get_rect() 

 95.     gameOverRect.center = (HALF_WINWIDTH, HALF_WINHEIGHT) 

 96.  

 97.     winSurf = BASICFONT.render('You have achieved OMEGA SQUIRREL!', True, 

WHITE) 

 98.     winRect = winSurf.get_rect() 

 99.     winRect.center = (HALF_WINWIDTH, HALF_WINHEIGHT) 

100.  

101.     winSurf2 = BASICFONT.render('(Press "r" to restart.)', True, WHITE) 

102.     winRect2 = winSurf2.get_rect() 

103.     winRect2.center = (HALF_WINWIDTH, HALF_WINHEIGHT + 30) 

104.  

105.     # camerax and cameray are where the middle of the camera view is 

106.     camerax = 0 

107.     cameray = 0 

108.  

109.     grassObjs = []    # stores all the grass objects in the game 

110.     squirrelObjs = [] # stores all the non-player squirrel objects 

111.     # stores the player object: 

112.     playerObj = {'surface': pygame.transform.scale(L_SQUIR_IMG, 

(STARTSIZE, STARTSIZE)), 

113.                  'facing': LEFT, 

114.                  'size': STARTSIZE, 

115.                  'x': HALF_WINWIDTH, 

116.                  'y': HALF_WINHEIGHT, 

117.                  'bounce':0, 

118.                  'health': MAXHEALTH} 

119.  

120.     moveLeft  = False 

121.     moveRight = False 

122.     moveUp    = False 

123.     moveDown  = False 

124.  

125.     # start off with some random grass images on the screen 

126.     for i in range(10): 

127.         grassObjs.append(makeNewGrass(camerax, cameray)) 

128.         grassObjs[i]['x'] = random.randint(0, WINWIDTH) 

129.         grassObjs[i]['y'] = random.randint(0, WINHEIGHT) 

130.  

131.     while True: # main game loop 

132.         # Check if we should turn off invulnerability 



Chapter 8 – Squirrel Eat Squirrel    205 

 

133.         if invulnerableMode and time.time() - invulnerableStartTime > 

INVULNTIME: 

134.             invulnerableMode = False 

135.  

136.         # move all the squirrels 

137.         for sObj in squirrelObjs: 

138.             # move the squirrel, and adjust for their bounce 

139.             sObj['x'] += sObj['movex'] 

140.             sObj['y'] += sObj['movey'] 

141.             sObj['bounce'] += 1 

142.             if sObj['bounce'] > sObj['bouncerate']: 

143.                 sObj['bounce'] = 0 # reset bounce amount 

144. 

145.             # random chance they change direction 

146.             if random.randint(0, 99) < DIRCHANGEFREQ: 

147.                 sObj['movex'] = getRandomVelocity() 

148.                 sObj['movey'] = getRandomVelocity() 

149.                 if sObj['movex'] > 0: # faces right 

150.                     sObj['surface'] = pygame.transform.scale(R_SQUIR_IMG, 

(sObj['width'], sObj['height'])) 

151.                 else: # faces left 

152.                     sObj['surface'] = pygame.transform.scale(L_SQUIR_IMG, 

(sObj['width'], sObj['height'])) 

153. 

154.  

155.         # go through all the objects and see if any need to be deleted. 

156.         for i in range(len(grassObjs) - 1, -1, -1): 

157.             if isOutsideActiveArea(camerax, cameray, grassObjs[i]): 

158.                 del grassObjs[i] 

159.         for i in range(len(squirrelObjs) - 1, -1, -1): 

160.             if isOutsideActiveArea(camerax, cameray, squirrelObjs[i]): 

161.                 del squirrelObjs[i] 

162.  

163.         # add more grass & squirrels if we don't have enough. 

164.         while len(grassObjs) < NUMGRASS: 

165.             grassObjs.append(makeNewGrass(camerax, cameray)) 

166.         while len(squirrelObjs) < NUMSQUIRRELS: 

167.             squirrelObjs.append(makeNewSquirrel(camerax, cameray)) 

168.  

169.         # adjust camerax and cameray if beyond the "camera slack" 

170.         playerCenterx = playerObj['x'] + int(playerObj['size'] / 2) 

171.         playerCentery = playerObj['y'] + int(playerObj['size'] / 2) 

172.         if (camerax + HALF_WINWIDTH) - playerCenterx > CAMERASLACK: 

173.             camerax = playerCenterx + CAMERASLACK - HALF_WINWIDTH 

174.         elif playerCenterx – (camerax + HALF_WINWIDTH) > CAMERASLACK: 

175.             camerax = playerCenterx – CAMERASLACK - HALF_WINWIDTH 





Chapter 8 – Squirrel Eat Squirrel    207 

 

220.                 if event.key in (K_UP, K_w): 

221.                     moveDown = False 

222.                     moveUp = True 

223.                 elif event.key in (K_DOWN, K_s): 

224.                     moveUp = False 

225.                     moveDown = True 

226.                 elif event.key in (K_LEFT, K_a): 

227.                     moveRight = False 

228.                     moveLeft = True 

229.                     if playerObj['facing'] == RIGHT: # change player image 

230.                         playerObj['surface'] = 

pygame.transform.scale(L_SQUIR_IMG, (playerObj['size'], playerObj['size'])) 

231.                     playerObj['facing'] = LEFT 

232.                 elif event.key in (K_RIGHT, K_d): 

233.                     moveLeft = False 

234.                     moveRight = True 

235.                     if playerObj['facing'] == LEFT: # change player image 

236.                         playerObj['surface'] = 

pygame.transform.scale(R_SQUIR_IMG, (playerObj['size'], playerObj['size'])) 

237.                     playerObj['facing'] = RIGHT 

238.                 elif winMode and event.key == K_r: 

239.                     return 

240. 

241.             elif event.type == KEYUP: 

242.                 # stop moving the player's squirrel 

243.                 if event.key in (K_LEFT, K_a): 

244.                     moveLeft = False 

245.                 elif event.key in (K_RIGHT, K_d): 

246.                     moveRight = False 

247.                 elif event.key in (K_UP, K_w): 

248.                     moveUp = False 

249.                 elif event.key in (K_DOWN, K_s): 

250.                     moveDown = False 

251. 

252.                 elif event.key == K_ESCAPE: 

253.                     terminate() 

254. 

255.         if not gameOverMode: 

256.             # actually move the player 

257.             if moveLeft: 

258.                 playerObj['x'] -= MOVERATE 

259.             if moveRight: 

260.                 playerObj['x'] += MOVERATE 

261.             if moveUp: 

262.                 playerObj['y'] -= MOVERATE 

263.             if moveDown: 





Chapter 8 – Squirrel Eat Squirrel    209 

 

304.  

305.         # check if the player has won. 

306.         if winMode: 

307.             DISPLAYSURF.blit(winSurf, winRect) 

308.             DISPLAYSURF.blit(winSurf2, winRect2) 

309.  

310.         pygame.display.update() 

311.         FPSCLOCK.tick(FPS) 

312.  

313.  

314. 

315. 

316. def drawHealthMeter(currentHealth): 

317.     for i in range(currentHealth): # draw red health bars 

318.         



210    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

347.         x = random.randint(camerax - WINWIDTH, camerax + (2 * WINWIDTH)) 

348.         y = random.randint(cameray - WINHEIGHT, cameray + (2 * WINHEIGHT)) 

349.         # create a Rect object with the random coordinates and use 

colliderect() 

350.         



Chapter 8 – Squirrel Eat Squirrel    211 

 

387.     # a half-window length beyond the edge of the window. 

388.     boundsLeftEdge = camerax - WINWIDTH 

389.     boundsTopEdge = cameray - WINHEIGHT 

390.     boundsRect = pygame.Rect(boundsLeftEdge, boundsTopEdge, WINWIDTH * 3, 

WINHEIGHT * 3) 

391.     objRect = pygame.Rect(obj['x'], obj['y'], obj['width'], obj['height']) 

392.     return not boundsRect.colliderect(objRect) 

393.  

394.  

395. if __name__ == '__main__': 

396.     main() 

The Usual Setup Code 

  1. # Squirrel Eat Squirrel (a 2D Katamari Damacy clone) 

  2. # By Al Sweigart al@inventwithpython.com 

  3. # http://inventwithpython.com/pygame 

  4. # Creative Commons BY-NC-SA 3.0 US 

  5.  

  6. import random, sys, time, math, pygame 

  7. from pygame.locals import * 

  8.  

  9. FPS = 30 







214    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

The pygame.transform.flip() Function 

 73.     # load the image files 

 74.     L_SQUIR_IMG = pygame.image.load('squirrel.png') 

 75.     





216    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

 

As you can see, the game world XY coordinates keep getting bigger and smaller forever. The 

game world origin is where the (0, 0) game world coordinates are. You can see that the three 

squirrels are located (in game world coordinates) at (-384, -84), (384, 306), and (585, -234). 

But we can only display 640 x 480 pixel area on the screen (though this can change if we pass 

different numbers to the pygame.display.set_mode() function), so we need to track 

where the camera’s origin is located in game world coordinates. In the picture above, the camera 

is placed at (-486, -





218    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 



Chapter 8 – Squirrel Eat Squirrel    219 

 

Starting Off with Some Grass 

125.     # start off with some random grass images on the screen 

126.     for i in range(10): 

127.         grassObjs.append(makeNewGrass(camerax, cameray)) 

128.         grassObjs[i]['x'] = random.randint(0, WINWIDTH) 

129.         grassObjs[i]['y'] = random.randint(0, WINHEIGHT) 



220    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

move left or up. The larger the value, the farther they move on each iteration through the game 

loop (which means they move faster). 

The for loop on line 137 will apply this moving code to each of the enemy squirrel objects in the 

squirrelObjs list. First, line 139 and 140 will adjust their 'x' and 'y' keys’ values. 

141.             sObj['bounce'] += 1 

142.             if sObj['bounce'] > sObj['bouncerate']: 

143.                 sObj['bounce'] = 0 # reset bounce amount 

The value in sObj['bounce'] is incremented on each iteration of the game loop for each 

squirrel. When this value is 0, the squirrel is at the very beginning of its bounce. When this value 

is equal to the value in sObj['bouncerate'] the value is at its end. (This is why a smaller 

sObj['bouncerate'] value makes for a faster bounce. If sObj['bouncerate'] is 3, 

then it only takes three iterations through the game loop for the squirrel to do a full bounce. If 

sObj['bouncerate'] were 10, then it would take ten iterations.) 

When sObj['bounce'] gets larger than sObj['bouncerate'], then it needs to be reset 

to 0. This is what lines 142 and 143 do. 

145.             # random chance they change direction 

146.             if random.randint(0, 99) < DIRCHANGEFREQ: 

147.                 sObj['movex'] = getRandomVelocity() 

148.                 sObj['movey'] = getRandomVelocity() 

149.                 if sObj['movex'] > 0: # faces right 

150.                     sObj['surface'] = pygame.transform.scale(R_SQUIR_IMG, 

(sObj['width'], sObj['height'])) 

151.                 else: # faces left 

152.                     sObj['surface'] = pygame.transform.scale(L_SQUIR_IMG, 

(sObj['width'], sObj['height'])) 

There is a 2% chance on each iteration through the game loop that the squirrel will randomly 

change speed and direction. On line 146 the random.randint(0, 99) call randomly selects 

an integer out of 100 possible integers. If this number is less than DIRCHANGEFREQ (which we 

set to 2 on line 33) then a new value will be set for sObj['movex'] and sObj['movey'].  

Because this means the squirrel might have changed direction, the Surface object in 

sObj['surface'] should be replaced by a new one that is properly facing left or right and 

scaled to the squirrel’s size. This is what lines 149 to 152 determine. Note that line 150 gets a 

Surface object scaled from R_SQUIR_IMG and line 152 gets one scaled from L_SQUIR_IMG. 





222    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

  File "<stdin>", line 2, in <module> 

IndexError: list index out of range 





224    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

camera than the camera slack should allow. The camerax value needs to be updated so that the 

player squirrel is just at the edge of the camera slack. This is why line 173 sets camerax to 

playerCenterx + CAMERASLACK – HALF_WINWIDTH. Note that the camerax 

variable is changed, not the playerObj['x'] value. We want to move the camera, not the 

player. 

The other three if statements follow similar logic for the left, up and down sides. 

Drawing the Background, Grass, Squirrels, and Health Meter 

181.         # draw the green background 

182.         DISPLAYSURF.fill(GRASSCOLOR) 

Line 182 begins the code that starts drawing the contents of the display Surface object. First, line 

182 draws a green color for the background. This will paint over all of the previous contents of 

the Surface so that we can start drawing the frame from scratch. 

184.         # draw all the grass objects on the screen 



Chapter 8 – Squirrel Eat Squirrel    225 

 

199.             DISPLAYSURF.blit(sObj['surface'], sObj['rect']) 

The for loop that draws all the enemy squirrel game objects is similar to the previous for loop, 

except that the Rect object it creates is saved in the 'rect' key’s value of the squirrel 

dictionary. The reason the code does this is because we will use this Rect object later to check if 

the enemy squirrels have collided with the player squirrel. 

Note that the top parameter for the Rect constructor is not just sObj['y'] - cameray but 

sObj['y'] - cameray - getBounceAmount(sObj['bounce'], 

sObj['bouncerate'], sObj['bounceheight']). The getBounceAmount() 

function will return the number of pixels that the top value should be raised. 

Also, there is no common list of Surface objects of the squirrel images, like there was with grass 

game objects and GRASSIMAGES. Each enemy squirrel game object has its own Surface object 

stored in the 'surface' key. This is because the squirrel images can be scaled to different 

sizes. 

202.         # draw the player squirrel 

203.         flashIsOn = round(time.time(), 1) * 10 % 2 == 1 

After drawing the grass and enemy squirrels, the code will draw the player’s squirrel. However, 

there is one case where we would skip drawing the player’s squirrel. When the player collides 

with a larger enemy squirrel, the player takes damage and flashes for a little bit to indicate that 

the player is temporarily invulnerable. This flashing effect is done by drawing the player squirrel 

on some iterations through the game loop but not on others.  

The player squirrel will be drawn on game loop iterations for a tenth of a second, and then not 

drawn on the game loop iterations for a tenth of second. This repeats over and over again as long 

as the player is invulnerable (which, in the code, means that the invulnerableMode variable 

is set to True). Our code will make the flashing last for two seconds, since 2 was stored in the 

INVULNTIME constant variable on line 25. 

To determine if the flash is on or not, line 202 grabs the current time from time.time(). Let’s 

use the example where this function call returns 1323926893.622. This value is passed to 

round(), which rounds it to one digit past the decimal point (since 1 is passed as round()’s 

second parameter). This means round() will return the value 1323926893.6. 

This value is then multiplied by 10, to become 13239268936. Once we have it as an integer, 

we can do the ―mod two‖ trick first discussed in the Memory Puzzle chapter to see if it is even or 

odd. 13239268936 % 2 evaluates to 0, which means that flashIsOn will be set to False, 

since 0 == 1 is False. 





Chapter 8 – Squirrel Eat Squirrel    227 

 

224.                     moveUp = False 

225.                     moveDown = True 

If the up or down arrow keys have been pressed (or their WASD equivalents), then the move 

variable (moveRight, moveDown, etc.) for that direction should be set to True and the move 

variable for the opposite direction should be set to False. 

226.                 elif event.key in (K_LEFT, K_a): 

227.                     moveRight = False 

228.                     moveLeft = True 

229.                     if playerObj['facing'] == RIGHT: # change player image 

230.                         playerObj['surface'] = 

pygame.transform.scale(L_SQUIR_IMG, (playerObj['size'], playerObj['size'])) 

231.                     playerObj['facing'] = LEFT 

232.                 elif event.key in (K_RIGHT, K_d): 

233.                     moveLeft = False 

234.                     moveRight = True 

235.                     if playerObj['facing'] == LEFT: # change player image



228    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

245.                 elif event.key in (K_RIGHT, K_d): 

246.                     moveRight = False 

247.                 elif event.key in (K_UP, K_w): 

248.                     moveUp = False 

249.                 elif event.key in (K_DOWN, K_s): 

250.                     moveDown = False 

If the player lets up on any of the arrow or WASD keys, then the code should set the move 

variable for that direction to False. This will stop the squirrel from moving in that direction any 

more. 

252.                 elif event.key == K_ESCAPE: 

253.                     terminate() 

If the key that was pressed was the Esc key, then terminate the program. 

Moving the Player, and Accounting for Bounce 

255.         if not gameOverMode: 

256.             # actually move the player 

257.             if moveLeft: 

258.                 playerObj['x'] -= MOVERATE 

259.             if moveRight: 

260.                 playerObj['x'] += MOVERATE 

261.             if moveUp: 

262.                 playerObj['y'] -= MOVERATE 

263.             if moveDown: 

264.                 playerObj['y'] += MOVERATE 

The code inside the if statement on line 255 will move the player’s squirrel around only if the 

game is not over. (This is why pressing on the arrow keys after the player’s squirrel dies will have 

no effect.) Depending on which of the move variables is set to True, the playerObj dictionary 

should have its playerObj['x'] and playerObj['y'] values changed by MOVERATE. 

(This is why a larger value in MOVERATE makes the squirrel move faster.) 

266.             if (moveLeft or moveRight or moveUp or moveDown) or 

playerObj['bounce'] != 0: 

267.                 playerObj['bounce'] += 1 

268.  

269. 





230    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

key in the player object (that is, the growth) is calculated based on the enemy squirrel’s size on 

line 280. Here’s a graph showing the growth from different sized squirrels. Notice that larger 

squirrels cause more growth: 

 

So, according to the chart, eating a squirrel that has a width and height of 45 (that is, an area of 

1600 pixels) would cause the player to grow 5 pixels wider and taller. 

Line 281 deletes the eaten squirrel object from the squirrelObjs list so that it will no longer 

appear on the screen or have its position updated. 

283.                         if playerObj['facing'] == LEFT: 

284.                             playerObj['surface'] = 

pygame.transform.scale(L_SQUIR_IMG, (playerObj['size'], playerObj['size'])) 

285.                         if playerObj['facing'] == RIGHT: 

286.                             playerObj['surface'] = 

pygame.transform.scale(R_SQUIR_IMG, (playerObj['size'], playerObj['size'])) 

The player’s squirrel image needs to be updated now that the squirrel is larger. This can be done 

by passing the original squirrel image in L_SQUIR_IMG or R_SQUIR_IMG to the 



Chapter 8 – Squirrel Eat Squirrel    231 

 

The way the player wins the game is by getting the squirrel to have a size larger than the integer 

stored in the WINSIZE constant variable. If this is true, then the winMode variable is set to 

True. Code in the other parts of this function will handle displaying the congratulations text and 

checking for the player to press the R key to restart the game.





Chapter 8 – Squirrel Eat Squirrel    233 

 

The terminate() function works the same as in the previous game programs. 

The Mathematics of the Sine Function 

328. def getBounceAmount(currentBounce, bounceRate, bounceHeight): 

329.     # Returns the number of pixels to offset based on the bounce. 

330.     # Larger bounceRate means a slower bounce. 

331.     # Larger bounceHeight means a higher bounce. 

332.     # currentBounce will always be less than bounceRate 

333.     return int(math.sin( (math.pi / float(bounceRate)) * currentBounce ) * 

bounceHeight) 

334. 

There is a mathematical function (which is similar to functions in programming in that they both 

―return‖ or ―evaluate‖ to a number based on their parameters) called sine (pronounced like ―sign‖ 

and often abbreviated as ―sin‖). You may have learned about it in math class, but if you haven’t it 

will be explained here. Python has this mathematic function as a Python function in the math 

module. You can pass an int or float value to math.sin(), and it will return a float value that is 

called the ―sine value‖ 

In the interactive shell, let’s see what math.sin() returns for some values: 

>>> import math 

>>> math.sin(1) 

0.8414709848078965 

>>> math.sin(2) 

0.90929742682568171 

>>> math.sin(3) 

0.14112000805986721 

>>> math.sin(4) 

-0.7568024953079282 

>>> math.sin(5) 

-0.95892427466313845 

It seems really hard to predict what value math.sin() is going to return based on what value 

we pass it (which might make you wonder what math.sin() is useful for). But if we graph the 

sine values of the integers 1 through 10 



234    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

 

You can kind of see a wavy pattern in the values returned by math.sin(). If you figure out the 

sine values for more numbers besides integers (for example, 1.5 and 2.5 and so on) and then 





236    



Chapter 8 – Squirrel Eat Squirrel    237 

 

not everyone will always be running the latest version of software and you want to ensure that the 

code you write works with as many computers as possible. 

You can’t always make your Python 3 code backwards compatible with Python 2, but if it’s 

possible then you should do it. Otherwise, when people with Python 2 try to run your games will 

get error messages and think that your program is buggy. 

A list of some differences between Python 2 and Python 3 can be found at 

http://inventwithpython.com/appendixa.html. 



238    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

represents the area of the camera (using camerax, cameray, WINWIDTH, and WINHEIGHT 

constants). 

Next, we randomly generate numbers for the XY coordinates that would be within the active area. 

The active area’s left and top edge are WINWIDTH and WINHEIGHT pixels to the left and up of 

camerax and cameray. So the active area’s left and top edge are at camerax - WINWIDTH



Chapter 8 – Squirrel Eat Squirrel    239 

 

squirrel aren’t too different from each other. Otherwise, using completely random numbers for 

width and height c



240    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

The grass game objects are dictionaries with the usual 'x', 'y', 'width', 'height', and 

'rect' keys but also a 'grassImage' key which is a number from 0 to one less than the 

length of the GRASSIMAGES list. This number will determine what image the grass game object 

has. For example, if the value of the grass object’s 'grassImage' key is 3, then it will use the 

Surface object stored at GRASSIMAGES[3] for its image. 

Checking if Outside the Active Area 

385. def isOutsideActiveArea(camerax, cameray, obj): 

386.     # Return False if camerax and cameray are more than 

387.     # a half-window length beyond the edge of the ws125 -( )]ow. 

388.     bous125ndsLeftEdge = camerax - WINWIDTH 

389.     bous125ndsTopEdge = cameray - WINHEs125IGHT 

390.     bous125ndsRect = pygame.s125Rect(s125bou-( )]sLeftEdge, bs125oundss125TopEdge, WINWIDTH * 3, 

WINHEIGHT * 3) 

391.     



Chapter 8 – Squirrel Eat Squirrel    241 

 

Since the player squirrel, enemy squirrel and grass objects all have 'x', 'y', 'width' and 

'height' keys, the isOutsideActiveArea() code can work with any type of those game 

objects.  

395. if __name__ == '__main__': 



242    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

CHAPTER 9 ð STAR PUSHER 

  

How to Play Star Pusher 
Star Pusher is a Sokoban or ―Box Pusher‖ clone. The player is in a room with several stars. There 

are star marks on the grounds of some of the tile sprites in the room. The player must figure out 

how to push the stars on top of the tiles with star marks. The player cannot push a star if there is a 

wall or another star behind it. The player cannot pull stars, so if a star gets pushed into a corner, 

the player will have to restart the level. When all of the stars have been pushed onto star-marked 

floor tiles, the level is complete and the next level starts. 

Each level is made up of a 2D grid of tile images. Tile sprites are images of the same size that 

can be placed next to each other to form more complex images. With a few floor and wall tiles, 

we can create levels of many interesting shapes and sizes. 



Chapter 9 – Star Pusher    243 

 

http://invpy.com/diff/starpusher to see if the differences between your code and the code in the 

book. 

The level file can be downloaded from http://invpy.com/starPusherLevels.txt. The tiles can be 

downloaded from http://invpy.com/starPusherImages.zip. 

Also, just like the squirrel, grass, and enemy ―objects‖ in the Squirrel Eat Squirrel game, when I 

say ―map objects‖, ―game state objects‖, or ―level objects‖ in this chapter, I do not mean objects 

in the Object-Oriented Programming sense. These ―objects‖ are really just dictionary values, but 

it is easier to refer to them as objects since they represent things in the game world. 

  1. # Star Pusher (a Sokoban clone) 

  2. 



244    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

 35. 

 36. 

 37. def main(): 

 38.     global FPSCLOCK, DISPLAYSURF, IMAGESDICT, TILEMAPPING, 

OUTSIDEDECOMAPPING, BASICFONT, PLAYERIMAGES, currentImage 

 39.  

 40.     # Pygame initialization and basic set up of the global variables. 

 41.     pygame.init() 

 42.     FPSCLOCK = pygame.time.Clock() 

 43.  

 44.     # Because the Surface object stored in DISPLAYSURF was returned 

 







Chapter 9 – Star Pusher    247 

 

169.                 # Set the camera move mode. 

170.                 elif event.key == K_a: 

171.                     cameraLeft = True 

172.                 elif event.key == K_d: 

173.                     cameraRight = True 

174.                 elif event.key == K_w: 

175.                     cameraUp = True 

176.                 elif event.key == K_s: 

177.                     cameraDown = True 

178.  

179.                 elif event.key == K_n: 

180.                     return 'next' 

181.                 elif event.key == K_b: 

182.                     return 'back' 

183.  

184.                 elif event.key == K_ESCAPE: 

185.                     terminate() # Esc key quits. 

186.                 elif event.key == K_BACKSPACE: 

187.                     return 'reset' # Reset the level. 

188.                 elif event.key == K_p: 

189.                     # Change the player image to the next one. 

190.                     currentImage += 1 

191.                     if currentImage >= len(PLAYERIMAGES): 

192.                         # After the last player image, use the first one. 

193.                         currentImage = 0 

194.                     mapNeedsRedraw = True 

195.  

196.             elif event.type == KEYUP: 

197.                 # Unset the camera move mode. 

198.                 if event.key == K_a: 

199.                     cameraLeft = False 

200.                 elif event.key == K_d: 

201.                     cameraRight = False 

202.                 elif event.key == K_w: 

203.                     cameraUp = False 

204.                 elif event.key == K_s: 

205.                     cameraDown = False 

206.  

207.         if playerMoveTo != None and not levelIsComplete: 

208.             # If the player pushed a key to move, make the move 

209.             # (if possible) and push any stars that are pushable. 

210.             moved = makeMove(mapObj, gameStateObj, playerMoveTo) 

211.  

212.             if moved: 

213.                 # increment the step counter. 

214.                 gameStateObj['stepCounter'] += 1 



248    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

215.                 mapNeedsRedraw = True 

216.  

217.             if isLevelFinished(levelObj, gameStateObj): 

218.                 # level is solved, we should show the "Solved!" image. 

219.                 levelIsComplete = True 

220.                 keyPressed = False 

221.  

222.         DISPLAYSURF.fill(BGCOLOR) 

223.  

224.         if mapNeedsRedraw: 

225.             mapSurf = drawMap(mapObj, gameStateObj, levelObj['goals']) 

226.             mapNeedsRedraw = False 

227.  

228.         if cameraUp and cameraOffsetY < MAX_CAM_X_PAN: 

229.             cameraOffsetY += CAM_MOVE_SPEED 

230.         elif cameraDown and cameraOffsetY > -MAX_CAM_X_PAN: 

231.             cameraOffsetY -= CAM_MOVE_SPEED 

232.         if cameraLeft and cameraOffsetX < MAX_CAM_Y_PAN: 

233.             cameraOffsetX += CAM_MOVE_SPEED 

234.         elif cameraRight and cameraOffsetX > -MAX_CAM_Y_PAN: 

235.             cameraOffsetX -= CAM_MOVE_SPEED 

236.  

237.         # Adjust mapSurf's Rect object based on the camera offset. 

238.         mapSurfRect = mapSurf.get_rect() 



Chapter 9 – Star Pusher    249 

 

259.  

260.         pygame.display.update() # draw DISPLAYSURF to the screen. 

261.         FPSCLOCK.tick() 

262. 

263. 

274. def decorateMap(mapObj, startxy): 

275.     """Makes a copy of the given map object and modifies it. 

276.     Here is what is done to it: 

277.         * Walls that are corners are turned into corner pieces. 

278.         * The outside/inside floor tile distinction is made. 



250    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 





252    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

397.     DISPLAYSURF.fill(BGCOLOR) 

398.  

399.     # Draw the title image to the window: 

400.     DISPLAYSURF.blit(IMAGESDICT['title'], titleRect) 

401.  

402.     # Position and draw the text. 

403.     for i in range(len(instructionText)): 



Chapter 9 – Star Pusher    253 

 

442.             # Ignore the ; lines, they're comments in the level file. 

443.             line = line[:line.find(';')] 

444.  

445.         if line != '': 

446.             # This line is part of the map. 

447.             mapTextLines.append(line) 

448.         elif line == '' and len(mapTextLines) > 0: 

449.             # A blank line indicates the end of a level's map in the file. 

450.             # Convert the text in mapTextLines into a level object. 

451.  

452.             # Find the longest row in the map. 

453.             maxWidth = -1 

454.             for i in range(len(mapTextLines)): 

455.                 if len(mapTextLines[i]) > maxWidth: 

456.                     maxWidth = len(mapTextLines[i]) 

457.             # Add spaces to the ends of the shorter rows. This 

458.             # ensures the map will be rectangular. 

459.             for i in range(len(mapTextLines)): 

460.                 mapTextLines[i] += ' ' * (maxWidth - len(mapTextLines[i])) 

461.  

462.             # Convert mapTextLines to a map object. 

463.             for x in range(len(mapTextLines[0])): 

464.                 mapObj.append([]) 

465.             for y in range(len(mapTextLines)): 

466.                 for x in range(maxWidth): 

467.                     mapObj[x].append(mapTextLines[y][x]) 

468.  

469.             # Loop through the spaces in the map and find the @, ., and $ 

470.             # characters for the starting game state. 

471.             startx = None # The x and y for the player's starting position 

472.             starty = None 

473.             goals = [] # list of (x, y) tuples for each goal. 

474.             stars = [] # list of (x, y) for each star's starting position. 

475.             for x in range(maxWidth): 

476.                 for y in range(len(mapObj[x])): 

477.                     if mapObj[x][y] in ('@', '+'): 

478





Chapter 9 – Star Pusher    255 

 

528.         floodFill(mapObj, x-1, y, oldCharacter, newCharacter) # call left 

529.     if y < len(mapObj[x]) - 1 and mapObj[x][y+1] == oldCharacter: 

530.         floodFill(mapObj, x, y+1, oldCharacter, newCharacter) # call down 



256    http://inventwithpython.com/pygame 

 



Chapter 9 – Star Pusher    257 

 

 17. TILEHEIGHT = 85 

 18. TILEFLOORHEIGHT = 45 

 19.  

 20. CAM_MOVE_SPEED = 5 # how many pixels per frame the camera moves 

 21.  

 22. # The percentage of outdoor tiles that have additional 

 23. # decoration on them, such as a tree or rock. 







260    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

105.         result = runLevel(levels, currentLevelIndex) 

The runLevel() function handles all the action for the game. It is passed a list of level objects, 

and the integer index of the level in that list to be played. When the player has finished playing 

the level, runLevel() will return one of the following strings: 'solved' (because the player 

has finished putting all the stars on the goals), 'next' (because the player wants to skip to the 

next level), 'back' (because the player wants to go back to the previous level), and 'reset' 





262    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

140





264    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

209.             # (if possible) and push any stars that are pushable. 

210



Chapter 9 – Star Pusher    265 

 

231.             cameraOffsetY -= CAM_MOVE_SPEED 

232.         if cameraLeft and cameraOffsetX < MAX_CAM_Y_PAN: 

233.             cameraOffsetX += CAM_MOVE_SPEED 

234.         elif cameraRight and cameraOffsetX > -MAX_CAM_Y_PAN: 

235.             cameraOffsetX -= CAM_MOVE_SPEED 

If the camera movement variables are set to True 



266    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 





268    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

317. 

318.     if isWall(mapObj, x, y): 

319.         return True 

320. 

321.     elif x < 0 or x >= len(mapObj) or y < 0 or y >= len(mapObj[x]): 

322.         return True # x and y aren't actually on the map. 

323. 

324.     elif (x, y) in gameStateObj['stars']: 

325.         return True # a star is blocking 

326.  

327.     return False 

There are three cases where a space on the map would be blocked: if there is a star, a wall, or the 

coordinates of the space are past the edges of the map. The isBlocked() function checks for 

these three cases and returns True if the XY coordinates are blocked and False if not. 

330. def makeMove(mapObj, gameStateObj, playerMoveTo): 

331.     """Given a map and game state object, see if it is possible for the 

332.     player to make the given move. If it is, then change the player's 

333.     position (and the position of any pushed star). If not, do nothing. 

334.  

335.     Returns True if the player moved, otherwise False.""" 

336.  

337.     # Make sure the player can move in the direction they want. 

338.     playerx, playery = gameStateObj['player'] 

339.  

340.     # This variable is "syntactic sugar". Typing "stars" is more 

341.     # readable than typing "gameStateObj['stars']" in our code. 

342.     stars = gameStateObj['stars'] 

343.  

344.     # The code for handling each of the directions is so similar aside 

345.     # from adding or subtracting 1 to the x/y coordinates. We can 

346.     # simplify it by using the xOffset and yOffset variables. 

347.     if playerMoveTo == UP: 

348.         xOffset = 0 

349.         yOffset = -1 

350.     elif playerMoveTo == RIGHT: 

351.         xOffset = 1 

352.         yOffset = 0 

353.     elif playerMoveTo == DOWN: 

354.         xOffset = 0 

355.         yOffset = 1 

356.     elif playerMoveTo == LEFT: 

357.         xOffset = -1 

358.         yOffset = 0 







Chapter 9 – Star Pusher    271 

 

414.             if event.type == QUIT: 



272    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 





274    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

Reading 



Chapter 9 – Star Pusher    275 

 

; http://inventwithpython.com/blog 

; By Al Sweigart al@inventwithpython.com 

; 



276    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

 

426. def readLevelsFile(filename): 

427.     assert os.path.exists(filename), 'Cannot find the level file: %s' % 

(filename) 



Chapter 9 – Star Pusher    277 

 

The for loop on line 437 will go through each line that was read from the level file one line at a 

time. The line number will be stored in lineNum and the string of text for the line will be stored 

in line. Any newline characters at the end of the string will be stripped off. 

441.         if ';' in line: 

442.             # Ignore the ; lines, they're comments in the level file. 

443.             line = line[:line.find(';')] 

Any text that exists after a semicolon in the map file is treated like a comment and is ignored. 

This is just like the # sign for Python comments. To make sure that our code does not 

accidentally think the comment is part of the map, the line variable is modified so that it only 

consists of the text up to (but not including) the semicolon character. (Remember that this is only 

changing the string in the content list. It is not changing the level file on the hard drive.) 

445.         



278    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

when it finds a new longest string. After this loop finishes executing, the maxWidth variable 

will be set to the length of the longest string in mapTextLines. 

457.             # Add spaces to the ends of the shorter rows. This 

458.             # ensures the map will be rectangular. 

459.             for i in range(len(mapTextLines)): 

460.                 mapTextLines[i] += ' ' * (maxWidth - len(mapTextLines[i])) 

The for loop on line 459 goes through the strings in mapTextLines again, this time to add 

enough space characters to pad each to be as long as maxWidth. 

462.             # Convert mapTextLines to a map object. 





280    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

496.                             'stars': stars} 

497.             levelObj = {'width': maxWidth, 

498.                         'height': len(mapObj), 

499.                         'mapObj': mapObj, 

500.                         'goals': goals, 

501.                         'startState': gameStateObj} 

502. 

503.             levels.append(levelObj) 

Finally, these objects are stored in the game state object, which itself is stored in the level object. 

The level object is added to a list of level objects on line 503. It is this levels list that will be 

returned by the readLevelsFile() function when all of the maps have been processed. 

505.             # Reset the variables for reading the next map. 

506.             mapTextLines = [] 

507.             mapObj = [] 

508.             gameStateObj = {} 

509.             levelNum += 1 

510.     return levels 

Now that this level is done processing, the variables for mapTextLines, mapObj, and 

gameStateObj should be reset to blank values for the next level that will be read in from the 

level file. The levelNum variable is also incremented by 1 for the next level’s level number. 

Recursive Functions 
Before you can learn how the floodFill() function works, you need to learn about recursion. 

Recursion is a simple concept: A recursive function is just a function that calls itself, like the 

one in the following program: (don’t type the letters at the beginning of each line though) 

A. def passFortyTwoWhenYouCallThisFunction(param): 

B.     print('Start of function.') 

C.     if param != 42: 

D.         print('You did not pass 42 when you called this function.') 

E.         print('Fine. I will do it myself.') 

F.         passFortyTwoWhenYouCallThisFunction(42) # this is the recursive call 

G.     if param == 42: 

H.         print('Thank you for passing 42 when you called this function.') 

I.     print('End of function.') 

J.  

K. passFortyTwoWhenYouCallThisFunction(41) 

(In your own programs, don’t make functions have names as long as 

passFortyTwoWhenYouCallThisFunction(). I’m just being stupid and silly. Stupilly.) 









284    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

    fizz(param - 1) 

  File "C:\rectest.py", line 2, in fizz 

    print(param) 

RuntimeError: maximum recursion depth exceeded 



Chapter 9 – Star Pusher    285 

 

To better understand how the floodFill() function works, here is a version that does not use 

recursive calls, but instead uses a list of XY coordinates to keep track of which spaces on the map 

should be checked and possibly changed to newCharacter. 

def floodFill(mapObj, x, y, oldCharacter, newCharacter): 

    spacesToCheck = [] 

    if mapObj[x][y] == oldCharacter: 

        spacesToCheck.append((x, y)) 

    while spacesToCheck != []: 

        x, y = spacesToCheck.pop() 

        mapObj[x][y] = newCharacter 

 

        if x < len(mapObj) - 1 and mapObj[x+1][y] == oldCharacter: 

            spacesToCheck.append((x+1, y)) # check right 

        if x > 0 and mapObj[x-1][y] == oldCharacter: 

            spacesToCheck.append((x-1, y)) # check left 

        if y < len(mapObj[x]) - 1 and mapObj[x][y+1] == oldCharacter: 

            spacesToCheck.append((x, y+1)) # check down 

        if y > 0 and mapObj[x][y-1] == oldCharacter: 

            spacesToCheck.append((x, y-1)) # check up 

If you would like to read a more detailed tutorial on recursion that uses cats and zombies for an 

example, go to http://invpy.com/recursivezombies. 

Drawing the Map 

535. def drawMap(mapObj, gameStateObj, goals): 

536.     """Draws the map to a Surface object, including the player and 

537.     





Chapter 9 – Star Pusher    287 

 

coordinate (which is done on line 568). Before the star is drawn, the code should first check if 

there is also a goal at this location, in which case, the ―covered goal‖ tile should be drawn first. 

569.             elif (x, y) in goals: 



288    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

work here because 



Chapter 10 – Four Extra Games    289 

 

CHAPTER 10 ð FOUR EXTRA 

GAMES 
Included in this chapter is the source code for four extra games. Unfortunately, only the source 

code (including comments) is in this chapter without any detailed explanation of the code. By 

now, you can play these games and figure out how the code works by looking at the source code 

and comments. 

The games are: 

 Flippy – An ―Othello‖ clone where the player tries to flip the computer AI player’s tiles. 

 Ink Spill – A ―Flood It‖ clone that makes use of the flood fill algorithm. 

 Four in a Row – A ―Connect Four‖ clone against the computer AI player. 

 Gemgem – A ―Bejeweled‖ clone where the player swaps gems to try to get three 

identical gems in a row. 

If you have any questions about the source code in this book, feel free to email the author at 

al@inventwithpython.com. 

Buggy versions of these programs are also available if you want to practice fixing bugs: 

 http://invpy.com/buggy/flippy 

 http://invpy.com/buggy/inkspill 

 http://invpy.com/buggy/fourinarow 

 http://invpy.com/buggy/gemgem 

  



290    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

Flippy, an “Othello” Clone 

      

Othello, also known by the generic name Reversi, has an 8 x 8 board with tiles that are black on 

one side and white on the other. The starting board looks like Figure 10-1. Each player takes turn 

placing down a new tile of their color. Any of the opponent's tiles that are between the new tile 

and the other tiles of that color is flipped. The goal of the game is to have as many of the tiles 

with your color as possible. For example, Figure 10-2 is what it looks like if the white player 

places a new white tile on space 5, 6. 

  

The starting Reversi board has two white tiles 

and two black tiles. 

White places a new tile. 

 



Chapter 10 – Four Extra Games    291 

 

The black tile at 5, 5 is in between the new white tile and the existing white tile at 5, 4. That black 

tile is flipped over and becomes a new white tile, making the board look like Figure 10-3. Black 

makes a similar move next, placing a black tile on 4, 6 which flips the white tile at 4, 5. This 

results in a board that looks like Figure 10-4. 

  

White's move will flip over one of black's tiles. Black places a new tile, which flips over one of 

white's tiles. 

 

Tiles in all directions are flipped as long as they are in between the player's new tile and existing 

tile. In Figure 10-5, the white player places a tile at 3, 6 and flips black tiles in both directions 

(marked by the lines). The result is in Figure 10-6. 



292    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 



Chapter 10 – Four Extra Games    293 

 

  2. # By Al Sweigart al@inventwithpython.com 

  3. # http://inventwithpython.com/pygame 

  4. # Released under a "Simplified BSD" license 

  5.  

  6. # Based on the "reversi.py" code that originally appeared in "Invent 

  7. # Your Own Computer Games with Python", chapter 15: 

  8. #   http://inventwithpython.com/chapter15.html 

  9.  

 10. import random, sys, pygame, time, copy 

 11. from pygame.locals import * 

 12.  

 13. FPS = 10 # frames per second to update the screen 

 14. WINDOWWIDTH = 640 # width of the program's window, in pixels 

 15. WINDOWHEIGHT = 480 # height in pixels 

 16. SPACESIZE = 50 # width & height of each space on the board, in pixels 

 17. BOARDWIDTH = 8 # how many columns of spaces on the game board 

 18. BOARDHEIGHT = 8 # how many rows of spaces on the game board 

 19. WHITE_TILE = 'WHITE_TILE' # an arbitrary but unique value 

 20. BLACK_TILE = 'BLACK_TILE' # an arbitrary but unique value 

 21. EMPTY_SPACE = 'EMPTY_SPACE' # an arbitrary but unique value 

 22. HINT_TILE = 'HINT_TILE' # an arbitrary but unique value 

 23. ANIMATIONSPEED = 25 # integer from 1 to 100, higher is faster animation 

 24.  

 25. # Amount of space on the left & right side (XMARGIN) or above and below 

 26. # (YMARGIN) the game board, in pixels. 

 27. XMARGIN = int((WINDOWWIDTH - (BOARDWIDTH * SPACESIZE)) / 2) 

 28. YMARGIN = int((WINDOWHEIGHT - (BOARDHEIGHT * SPACESIZE)) / 2) 

 29.  

 30. #              R    G    B 

 31. WHITE      = (255, 255, 255) 

 32. BLACK      = (  0,   0,   0) 

 33. GREEN      = (  0, 155,   0) 

 34. BRIGHTBLUE = (  0,  50, 255) 

 35. BROWN      = (174,  94,   0) 

 36.  

 37. TEXTBGCOLOR1 = BRIGHTBLUE 

 38. TEXTBGCOLOR2 = GREEN 

 39. GRIDLINECOLOR = BLACK 

 40. TEXTCOLOR = WHITE 

 41. HINTCOLOR = BROWN 

 42.  

 43.  

 44. def main(): 

 45.     global MAINCLOCK, DISPLAYSURF, FONT, BIGFONT, BGIMAGE 

 46.  

 47.     pygame.init() 



294    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

 48.     MAINCLOCK = pygame.time.Clock() 

 49.     DISPLAYSURF = pygame.display.set_mode((WINDOWWIDTH, WINDOWHEIGHT)) 

 50.     pygame.display.set_caption('Flippy') 

 51.     FONT = pygame.font.Font('freesansbold.ttf', 16) 

 52.     BIGFONT = pygame.font.Font('freesansbold.ttf', 32) 

 53.  

 54.     # Set up the background image. 

 55.     boardImage = pygame.image.load('flippyboard.png') 

 56.     # Use smoothscale() to stretch the board image to fit the entire 

board: 

 57.



Chapter 10 – Four Extra Games    295 

 

 89.     hintsRect = hintsSurf.get_rect() 

 90.     hintsRect.topright = (WINDOWWIDTH - 8, 40) 

 91.  

 92.     while True: # main game loop 

 93.         # Keep looping for player and computer's turns. 

 94.         if turn == 'player': 

 95.             # Player's turn: 

 96.             if getValidMoves(mainBoard, playerTile) == []: 

 97.                 # If it's the player's turn but they 

 98.                 # can't move, then end the game. 

 99.                 break 

100.             movexy = None 

101.             while movexy == None: 

102.                 # Keep looping until the player clicks on a valid space. 

103.  

104.                 # Determine which board data structure to use for display. 

105.                 if showHints: 

106.                     boardToDraw = getBoardWithValidMoves(mainBoard, 

playerTile) 

107.                 else: 

108.                     boardToDraw = mainBoard 

109.  

110.                 checkForQuit() 

111.                 for event in pygame.event.get(): # event handling loop 

112.                     if event.type == MOUSEBUTTONUP: 

113.                         # Handle mouse click events 

114.                         mousex, mousey = event.pos 

115.                         if newGameRect.collidepoint( (mousex, mousey) ): 



296    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

132.                 DISPLAYSURF.blit(hintsSurf, hintsRect) 

133.  

134.                 MAINCLOCK.tick(FPS) 

135.                 pygame.display.update() 

136.  

137.             # Make the move and end the turn. 

138.             makeMove(mainBoard, playerTile, movexy[0], movexy[1], True) 

139.             if getValidMoves(mainBoard, computerTile) != []: 

140.                 # Only set for the computer's turn if it can make a move. 

141.                 turn = 'computer' 

142.  

143.         else: 

144.             # Computer's turn: 

145.             if getValidMoves(mainBoard, computerTile) == []: 

146.                 # If it was set to be the computer's turn but 

147.                 # they can't move, then end the game. 

148.                 break 

149.  

150.             # Draw the board. 

151.             drawBoard(mainBoard) 

152.             drawInfo(mainBoard, playerTile, computerTile, turn) 

153.  

154.             # Draw the "New Game" and "Hints" buttons. 

155.             DISPLAYSURF.blit(newGameSurf, newGameRect) 

156.             DISPLAYSURF.blit(hintsSurf, hintsRect) 

157.  

158.             # Make it look like the computer is thinking by pausing a bit. 

159.             pauseUntil = time.time() + random.randint(5, 15) * 0.1 

160.             while time.time() < pauseUntil: 

161.                 pygame.display.update() 

162.  

163.             # Make the move and end the turn. 

164.             x, y = getComputerMove(mainBoard, computerTile) 

165.             makeMove(mainBoard, computerTile, x, y, True) 

166.             if getValidMoves(mainBoard, playerTile) != []: 

167.                 # Only set for the player's turn if they can make a move. 

168.                 turn = 'player' 

169.  

170.     # Display the final score. 

171.     drawBoard(mainBoard) 

172.     scores = getScoreOfBoard(mainBoard) 

173.  

174.     # Determine the text of the message to display. 

175.     if scores[playerTile] > scores[computerTile]: 

176.         text = 'You beat the computer by %s points! Congratulations!' % \ 

177.                (scores[playerTile] 





298    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

221.  

222. def translateBoardToPixelCoord(x, y): 

223.     return XMARGIN + x * SPACESIZE + int(SPACESIZE / 2), YMARGIN + y * 

SPACESIZE + int(SPACESIZE / 2) 

224.  

225.  

226. def animateTileChange(tilesToFlip, tileColor, additionalTile): 

227.     # Draw the additional tile that was just laid down. (Otherwise we'd 

228.     # have to completely redraw the board & the board info.) 

229.     if tileColor == WHITE_TILE: 

230.         additionalTileColor = WHITE 

231.     else: 

232.         additionalTileColor = BLACK 

233.     additionalTileX, additionalTileY = 

translateBoardToPixelCoord(additionalTile[0], additionalTile[1]) 

234.     pygame.draw.circle(DISPLAYSURF, additionalTileColor, (additionalTileX, 

additionalTileY), int(SPACESIZE / 2) - 4) 

235.     pygame.display.update() 

236.  

237.     for rgbValues in range(0, 255, int(ANIMATIONSPEED * 2.55)): 

238.         if rgbValues > 255: 

239.             rgbValues = 255 

240.         elif rgbValues < 0: 

241.             rgbValues = 0 

242.  

243.         if tileColor == WHITE_TILE: 

244.             color = tuple([rgbValues] * 3) # rgbValues goes from 0 to 255 

245.         elif tileColor == BLACK_TILE: 

246.             color = tuple([255 - rgbValues] * 3) # rgbValues goes from 255 

to 0 

247.  

248.         for x, y in tilesToFlip: 

249.             centerx, centery = translateBoardToPixelCoord(x, y) 

250.             pygame.draw.circle(DISPLAYSURF, color, (centerx, centery), 

int(SPACESIZE / 2) - 4) 

251.         pygame.display.update() 

252.         MAINCLOCK.tick(FPS) 

253.         checkForQuit() 

254.  

255.  

256. def drawBoard(board): 

257.     # Draw background of board. 

258.     DISPLAYSURF.blit(BGIMAGE, BGIMAGE.get_rect()) 

259.  

260.     # Draw grid lines of the board. 

261.     for x in range(BOARDWIDTH + 1): 





300    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

304.     # Draws scores and whose turn it is at the bottom of the screen. 

305.     scores = getScoreOfBoard(board) 

306.     scoreSurf = FONT.render("Player Score: %s    Computer Score: %s    

%s's Turn" % (str(scores[playerTile]), str(scores[computerTile]), 

turn.title()), True, TEXTCOLOR) 

307.     scoreRect = scoreSurf.get_rect() 

308.     scoreRect.bottomleft = (10, WINDOWHEIGHT - 5) 

309.     DISPLAYSURF.blit(scoreSurf, scoreRect) 

310.  

311.  

312. def resetBoard(board): 

313.     # Blanks out the board it is passed, and sets up starting tiles. 

314.     for x in range(BOARDWIDTH): 

315.         for y in range(BOARDHEIGHT): 

316.             board[x][y] = EMPTY_SPACE 

317.  

318.     # Add starting pieces to the center 

319.     board[3][3] = WHITE_TILE 

320.     board[3][4] = BLACK_TILE 

321.     board[4][3] = BLACK_TILE 

322.     board[4][4] = WHITE_TILE 

323.  

324.  

325. def getNewBoard(): 

326.     # Creates a brand new, empty board data structure. 

327.     board = [] 

328.     for i in range(BOARDWIDTH): 

329.         board.append([EMPTY_SPACE] * BOARDHEIGHT) 

330.  

331.     return board 

332.  

333.  

334. def isValidMove(board, tile, xstart, ystart): 

335.     # Returns False if the player's move is invalid. If it is a valid 

336.     # move, returns a list of spaces of the captured pieces. 

337.     if board[xstart][ystart] != EMPTY_SPACE or not isOnBoard(xstart, 

ystart): 

338.         return False 

339.  

340.     board[xstart][ystart] = tile # temporarily set the tile on the board. 

341.  

342.     if tile == WHITE_TILE: 

343.         otherTile = BLACK_TILE 

344.     else: 

345.         otherTile = WHITE_TILE 

346.  





302    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

392.     for x, y in getValidMoves(dupeBoard, tile): 

393.         dupeBoard[x][y] = HINT_TILE 

394.     return dupeBoard 

395.  

396.  

397. def getValidMoves(board, tile): 

398.     # Returns a list of (x,y) tuples of all valid moves. 

399.     validMoves = [] 

400.  

401.     for x in range(BOARDWIDTH): 

402.         for y in range(BOARDHEIGHT): 

403.             if isValidMove(board, tile, x, y) != False: 

404.                 validMoves.append((x, y)) 

405.     return validMoves 

406.  

407.  

408. def getScoreOfBoard(board): 

409.     # Determine the score by counting the tiles. 

410.     xscore = 0 

411.     oscore = 0 

412.     for x in range(BOARDWIDTH): 

413.         for y in range(BOARDHEIGHT): 

414.             if board[x][y] == WHITE_TILE: 

415.                 xscore += 1 

416.             if board[x][y] == BLACK_TILE: 

417.                 oscore += 1 

418.     return {WHITE_TILE:xscore, BLACK_TILE:oscore} 

419.  

420.  

421. def enterPlayerTile(): 

422.     # Draws the text and handles the mouse click events for letting 

423.     # the player choose which color they want to be.  Returns 

424.     # [WHITE_TILE, BLACK_TILE] if the player chooses to be White, 

425.     # [BLACK_TILE, WHITE_TILE] if Black. 

426.  

427.     # Create the text. 

428.     textSurf = FONT.render('Do you want to be white or black?', True, 

TEXTCOLOR, TEXTBGCOLOR1) 

429.     textRect = textSurf.get_rect() 

430.     textRect.center = (int(WINDOWWIDTH / 2), int(WINDOWHEIGHT / 2)) 

431.  

432.     xSurf = BIGFONT.render('White', True, TEXTCOLOR, TEXTBGCOLOR1) 

433.     xRect = xSurf.get_rect() 

434.     xRect.center = (int(WINDOWWIDTH / 2) - 60, int(WINDOWHEIGHT / 2) + 40) 

435.  

436.     oSurf = BIGFONT.render('Black', True, TEXTCOLOR, TEXTBGCOLOR1) 







Chapter 10 – Four Extra Games    305 

 

Ink Spill, a “Flood It” Clone 

       

The game ―Flood It‖ begins with a board filled with colored tiles. On each turn the player chooses 

a new color to paint the top left tile and any tiles adjacent to it of that same color. This g





Chapter 10 – Four Extra Games    307 

 

 56.                 









Chapter 10 – Four Extra Games    311 

 

220.                 elif pygame.Rect(53, 50, 104, 29).collidepoint(mousex, 

mousey): 

221.                     difficulty = MEDIUM 

222.                 elif pygame.Rect(72, 85, 65, 31).collidepoint(mousex, 

mousey): 

223.                     difficulty = HARD 

224.  



312    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

256.  

257.  

258. def drawColorSchemeBoxes(x, y, schemeNum): 

259.     # Draws the color scheme boxes that appear on the "Settings" screen. 

260.     for boxy in range(2): 

261.         for boxx in range(3): 

262.             pygame.draw.rect(DISPLAYSURF, COLORSCHEMES[schemeNum][3 * boxy 

+ boxx + 1], (x + MEDIUMBOXSIZE * boxx, y + MEDIUMBOXSIZE * boxy, 

MEDIUMBOXSIZE, MEDIUMBOXSIZE)) 

263.             if paletteColors == COLORSCHEMES[schemeNum][1:]: 

264.                 # put the ink spot next to the selected color scheme 

265.                 DISPLAYSURF.blit(SPOTIMAGE, (x - 50, y)) 

266.  

267.  

268. def flashBorderAnimation(color, board, animationSpeed=30): 

269.     origSurf = DISPLAYSURF.copy() 

270.     flashSurf = pygame.Surface(DISPLAYSURF.get_size()) 

271.     flashSurf = flashSurf.convert_alpha() 

272.     for start, end, step in ((0, 256, 1), (255, 0, -1)): 

273.         # the first iteration on the outer loop will set the inner loop 

274.         # to have transparency go from 0 to 255, the second iteration will 

275.         # have it go from 255 to 0. This is the "flash". 

276.         for transparency in range(start, end, animationSpeed * step): 

277.             DISPLAYSURF.blit(origSurf, (0, 0)) 

278.             r, g, b = color 

279.             flashSurf.fill((r, g, b, transparency)) 

280.             DISPLAYSURF.blit(flashSurf, (0, 0)) 

281.             drawBoard(board) # draw board ON TOP OF the transparency layer 

282.             pygame.display.update() 

283.             FPSCLOCK.tick(FPS) 

284.     DISPLAYSURF.blit(origSurf, (0, 0)) # redraw the original surface 

285.  

286.  

287. def floodAnimation(board, paletteClicked, animationSpeed=25): 

288.     origBoard = copy.deepcopy(board) 

289.     floodFill(board, board[0][0], paletteClicked, 0, 0) 

290.  

291.     for transparency in range(0, 255, animationSpeed): 

292.         # The "new" board slowly become opaque over the original board. 

293.         drawBoard(origBoard) 

294.         drawBoard(board, transparency) 

295.         pygame.display.update() 

296.         FPSCLOCK.tick(FPS) 

297.  

298.  

299. def generateRandomBoard(width, height, difficulty=MEDIUM): 



Chapter 10 – Four Extra Games    313 

 

300.     # Creates a board data structure with random colors for each box. 

301.     board = [] 

302.     for x in range(width): 

303.         column = [] 

304.         for y in range(height): 

305.             column.append(random.randint(0, len(paletteColors) - 1)) 

306.         board.append(column) 

307.  

308.     # Make board easier by setting some boxes to same color as a neighbor. 

309.  

310.     # Determine how many boxes to change. 

311.     if difficulty == EASY: 

312.         if boxSize == SMALLBOXSIZE: 

313.             boxesToChange = 100 

314.         else: 

315.             boxesToChange = 1500 

316.     elif difficulty == MEDIUM: 

317.         if boxSize == SMALLBOXSIZE: 

318.             boxesToChange = 5 

319.         else: 

320.             boxesToChange = 200 

321.     else: 

322.         boxesToChange = 0 

323.  

324.     # Change neighbor's colors: 

325.     for i in range(boxesToChange): 

326.         # Randomly choose a box whose color to copy 

327.         x = random.randint(1, width-2) 

328.         y = random.randint(1, height-2) 

329.  

330.         # Randomly choose neighbors to change. 

331.         direction = random.randint(0, 3) 

332.         if direction == 0: # change left and up neighbor 

333.             board[x-1][y] == board[x][y] 

334.             board[x][y-1] == board[x][y] 

335.         elif direction == 1: # change right and down neighbor 

336.             board[x+1][y] == board[x][y] 

337.             board[x][y+1] == board[x][y] 



314    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

346.  

347. def drawLogoAndButtons(): 

348.     # draw the Ink Spill logo and Settings and Reset buttons. 

349.     DISPLAYSURF.blit(LOGOIMAGE, (WINDOWWIDTH - LOGOIMAGE.get_width(), 0)) 

350.     DISPLAYSURF.blit(SETTINGSBUTTONIMAGE, (WINDOWWIDTH - 

SETTINGSBUTTONIMAGE.get_width(), WINDOWHEIGHT - 

SETTINGSBUTTONIMAGE.get_height())) 





316    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

422.     if y > 0: 

423.         floodFill







Chapter 10 – Four Extra Games    319 

 

 45.     pygame.display.set_caption('Four in a Row') 

 46.  

 47.     REDPILERECT = pygame.Rect(int(SPACESIZE / 2), WINDOWHEIGHT - int(3 * 

SPACESIZE / 2), SPACESIZE, SPACESIZE) 

 48.     BLACKPILERECT = pygame.Rect(WINDOWWIDTH - int(3 * SPACESIZE / 2), 

9T
BT
66.CT T
q
0.0012J
E.00125 -0.12134 576.09 720.06.22 Tm Tm86 Tmq
0.0012J
E.00125 -0.1f7





Chapter 10 – Four Extra Games    321 

 

131. def makeMove(board, player, column): 

132.     lowest = getLowestEmptySpace(board, column) 

133.     if lowest != -1: 

134.         board[column][lowest] = player 

135.  

136.  

137. def drawBoard(board, extraToken=None): 

138.     DISPLAYSURF.fill(BGCOLOR) 

139.  

140.     # draw tokens 

141.     spaceRect = pygame.Rect(0, 0, SPACESIZE, SPACESIZE) 

142.     for x in range(BOARDWIDTH): 

143.         for y in range(BOARDHEIGHT): 

144.             spaceRect.topleft = (XMARGIN + (x * SPACESIZE), YMARGIN + (y * 

SPACESIZE)) 

145.             if board[x][y] == RED: 



322    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

173.  

174.  

175. def getHumanMove(board, isFirstMove): 

176.     draggingToken = False 

177.     tokenx, tokeny = None, None 

178.     while True: 

179.         for event in pygame.event.get(): # event handling loop 

180.             if event.type == QUIT: 

181.                 pygame.quit() 

182.                 sys.exit() 

183.             













328    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

 18. import random, time, pygame, sys, copy 

 19. from pygame.locals import * 

 20.  

 21. FPS = 30 # frames per second to update the screen 

 22. WINDOWWIDTH = 600  # width of the program's window, in pixels 

 23. WINDOWHEIGHT = 600 # height in pixels 

 24.  

 25. BOARDWIDTH = 8 # how many columns in the board 

 26. BOARDHEIGHT = 8 # how many rows in the board 

 27. GEMIMAGESIZE = 64 # width & height of each space in pixels 

 28.  

 29. # NUMGEMIMAGES is the number of gem types. You will need .png image 

 30. # files named gem0.png, gem1.png, etc. up to gem(N-1).png. 

 31. NUMGEMIMAGES = 7 

 32. assert NUMGEMIMAGES >= 5 # game needs at least 5 types of gems to work 

 33.  

 34. # NUMMATCHSOUNDS is the number of different sounds to choose from when 

 35. # a match is made. The .wav files are named match0.wav, match1.wav, etc. 

 36. NUMMATCHSOUNDS = 6 

 37.  

 38. MOVERATE = 25 # 1 to 100, larger num means faster animations 

 39. DEDUCTSPEED = 0.8 # reduces score by 1 point every DEDUCTSPEED seconds. 

 40.  

 41. #             R    G    B 

 42. PURPLE    = (255,   0, 255) 

 43. LIGHTBLUE = (170, 190, 255) 

 44. BLUE      = (  0,   0, 255) 

 45. RED       = (255, 100, 100) 

 46. BLACK     = (  0,   0,   0) 

 47. BROWN     = ( 85,  65,   0) 

 48. HIGHLIGHTCOLOR = PURPLE # color of the selected gem's border

 





330    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

108.  

109.  

110. def runGame(): 

111.     # Plays through a single game. When the game is over, this function 

returns. 

112.  

113.     # initialize the board 

114.     gameBoard = getBlankBoard() 

115.     score = 0 

116.     fillBoardAndAnimate(gameBoard, [], score) # Drop the initial gems. 

117.  

118.     # initialize variables for the start of a new game 

119.     firstSelectedGem = None 

120.     lastMouseDownX = None 

121.     lastMouseDownY = None 

122.     gameIsOver = False 

123.     lastScoreDeduction = time.time() 

124.     clickContinueTextSurf = None 

125.  

126.     while True: # main game loop 

127.         clickedSpace = None 

128.         for event in pygame.event.get(): # event handling loop 

129.             if event.type == QUIT or (event.type == KEYUP and event.key == 

K_ESCAPE): 

130.                 pygame.quit() 

131.                 sys.exit() 

132.             elif event.type == KEYUP and event.key == K_BACKSPACE: 

133.                 return # start a new game 

134.  

135.             elif event.type == MOUSEBUTTONUP: 

136.                 if gameIsOver: 

137.                     return # after games ends, click to start a new game 

138.  

139.                 if event.pos == (lastMouseDownX, lastMouseDownY): 

140.                     # This event is a mouse click, not the end of a mouse 

drag. 

141.                     clickedSpace = checkForGemClick(event.pos) 

142.                 else: 

143.                     # this is the end of a mouse drag 

144.                     firstSelectedGem = checkForGemClick((lastMouseDownX, 

lastMouseDownY)) 

145.                     clickedSpace = checkForGemClick(event.pos) 

146.                     if not firstSelectedGem or not clickedSpace: 

147.                         # if not part of a valid drag, deselect both 

148.                         firstSelectedGem = None 

149.                         clickedSpace = None 





332    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

187.                     # points is a list of dicts that tells 

fillBoardAndAnimate() 

188.                     # where on the screen to display text to show how many  

189.                     # points the player got. points is a list because if  

190.                     # the player gets multiple matches, then multiple 

points text should appear. 

191.                     points = [] 

192.                     for gemSet in matchedGems: 

193.                         scoreAdd += (10 + (len(gemSet) - 3) * 10) 

194.                         for gem in gemSet: 

195.                             gameBoard[gem[0]][gem[1]] = EMPTY_SPACE 

196.                         



Chapter 10 – Four Extra Games    333 

 

227.             score -= 1 

228.             lastScoreDeduction = time.time() 

229.         drawScore(score) 

230.         pygame.display.update() 

231.         FPSCLOCK.tick(FPS) 

232.  

233.  

234. def getSwappingGems(board, firstXY, secondXY): 

235.     # If the gems at the (X, Y) coordinates of the two gems are adjacent, 

236.     # then their 'direction' keys are set to the appropriate direction 

237.     # value to be swapped with each other. 

238.     # Otherwise, (None, None) is returned. 

239.     firstGem = {'imageNum': board[firstXY['x']][firstXY['y']], 

240.                 'x': firstXY['x'], 

241.                 'y': firstXY['y']} 

242.     













Chapter 10 – Four Extra Games    339 

 

482.             board[gem['x']][0] = gem['imageNum'] # move to top row 

483.  

484.  

485. def fillBoardAndAnimate(board, points, score): 

486.     



340    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

526. def getBoardCopyMinusGems(board, gems): 

527.     # Creates and returns a copy of the passed board data structure, 

528.     # with the gems in the "gems" list removed from it. 

529.     # 

530.     # Gems is a list of dicts, with keys x, y, direction, imageNum 

531.  

532.     boardCopy = copy.deepcopy(board) 

533.  

534.     # Remove some of the gems from this board data structure copy. 

535.     for gem in gems: 

536.         if gem['y'] != ROWABOVEBOARD: 

537.             boardCopy[gem['x']][gem['y']] = EMPTY_SPACE 

538.     return boardCopy 

539.  

540.  

541. def drawScore(score): 

542.     scoreImg = BASICFONT.render(str(score), 1, SCORECOLOR) 

543.     scoreRect = scoreImg.get_rect() 

544.     scoreRect.bottomleft = (10, WINDOWHEIGHT - 6) 

545.     DISPLAYSURF.blit(scoreImg, scoreRect) 

546.  

547.  

548. if __name__ == '__main__': 

549.     main() 

Summary 
I hope these game programs have given you your own ideas about what games you’d like to make 

and how you can write the code for them. Even if you don’t have any ideas of your own, it’s great 



Chapter 10 – Four Extra Games    341 

 

 http://inventwithpython.com/pygame - This book's website, which includes all the source 

code for these programs and additional information. This site also has the image and 

sound files used in the Pygame programs.  

 http://inventwithpython.com - The website for the book ―Invent Your Own Computer 

Games with Python‖, which covers basic Python programming. 

 http://invpy.com/wiki - 





Glossary    343 

 

with the Pygame drawing or blitting functions will appear on the screen when 

pygame.display.update() is called. 

Drawing Primitives - The name for the basic shape-drawing functions in Pygame. Drawing 

primitives include rectangles, lines, and ellipses. Drawing primitives do not include images like 

the ones in .png or .jpg files. 

Event Handling - 



344    http://inventwithpython.com/pygame 

 

Email questions to the author: al@inventwithpython.com 

 

Interpreter - The software that executes instructions written in the Python programming 

language. On Windows, this is python.exe. When someone says, "Python runs this program", they 

mean "the Python interpreter software runs this program." 

Magic Numbers - Integers or floating-point values used in a program without explanation. Magic 

numbers should be replaced by constant variables with descriptive names to increase readability. 

Main Loop - See, Game Loop 

Member Variable - See, Attributes. 

Modulus Operator



Glossary    345 

 

RGB Values - An RGB value is an exact value of a particular color. RGB stands for red, green 

blue. In Pygame, an RGB value is a tuple of three integers (all between 0 and 255) which 

represent the amount of red, green, and blue are in the color. 

Shell - See, I





About the Author    347 

 

ABOUT THE AUTHOR 

 

Albert Sweigart (but you can call him Al), is a software developer in San Francisco, California 

who enjoys bicycling, volunteering, haunting coffee shops, and making useful software. ―Making 

Games with Python & Pygame‖ is his second book. 

His first book, ―Invent Your Own Computer Games with Python‖ can be read online at 

http://inventwithpython.com. 

He is originally from Houston, Texas. He finally put his University of Texas at Austin computer 

science degree in a frame. He laughs out loud when watching park squirrels, which makes people 

think he’s a simpleton. 

 Email: al@inventwithpython.com 

 Blog: http://coffeeghost.net 

 Twitter: @AlSweigart 


